コード例 #1
0
ファイル: trainer_test.py プロジェクト: mantili/allennlp
    def test_sparse_clip_grad(self):
        # create a sparse embedding layer, then take gradient
        embedding = torch.nn.Embedding(100, 16, sparse=True)
        embedding.zero_grad()
        ids = torch.autograd.Variable((torch.rand(17) * 100).long())
        # Set some of the ids to the same value so that the sparse gradient
        # has repeated indices.  This tests some additional logic.
        ids[:5] = 5
        loss = embedding(ids).sum()
        loss.backward()
        assert is_sparse(embedding.weight.grad)

        # Now try to clip the gradients.
        _ = sparse_clip_norm([embedding.weight], 1.5)
        # Final norm should be 1.5
        grad = embedding.weight.grad.data.coalesce()
        self.assertAlmostEqual(grad._values().norm(2.0), 1.5, places=5)  # pylint: disable=protected-access
コード例 #2
0
ファイル: trainer_test.py プロジェクト: ziaridoy20/allennlp
    def test_sparse_clip_grad(self):
        # create a sparse embedding layer, then take gradient
        embedding = torch.nn.Embedding(100, 16, sparse=True)
        embedding.zero_grad()
        ids = (torch.rand(17) * 100).long()
        # Set some of the ids to the same value so that the sparse gradient
        # has repeated indices.  This tests some additional logic.
        ids[:5] = 5
        loss = embedding(ids).sum()
        loss.backward()
        assert is_sparse(embedding.weight.grad)

        # Now try to clip the gradients.
        _ = sparse_clip_norm([embedding.weight], 1.5)
        # Final norm should be 1.5
        grad = embedding.weight.grad.coalesce()  # pylint: disable=no-member
        self.assertAlmostEqual(grad._values().norm(2.0).item(), 1.5, places=5) # pylint: disable=protected-access