コード例 #1
0
def get_neuropil_subtracted_traces(roi_traces, neuropil_traces):
    """
    get_neuropil_subtracted_traces(roi_traces, neuropil_traces)

    Returns ROI traces with neuropil subtracted, as well as the contamination 
    ratio for each ROI.

    Required args:
        - roi_traces (2D array)     : ROI traces, structured as ROI x frame
        - neuropil_traces (2D array): neuropil traces, structured as ROI x frame

    Returns:
        - neuropilsub_traces (2D array): ROI traces with neuropil subtracted, 
                                         structured as ROI x frame
        - r (1D array)                 : contamination ratio (0-1) for each ROI
    """
    
    r = np.full(len(roi_traces), 0.)
    for i, (roi_trace, neuropil_trace) in enumerate(zip(
        roi_traces, neuropil_traces)):
        if np.isfinite(roi_trace).all():
            r[i] = r_neuropil.estimate_contamination_ratios(
                roi_trace, neuropil_trace, iterations=3)["r"]

    neuropilsub_traces = roi_traces - neuropil_traces * r[:, np.newaxis]

    return neuropilsub_traces, r
コード例 #2
0
def main():
    module = PipelineModule()
    args = module.args

    jin = module.input_data()

    ########################################################################
    # prelude -- get processing metadata

    trace_file = jin["roi_trace_file"]
    neuropil_file = jin["neuropil_trace_file"]
    storage_dir = jin["storage_directory"]

    plot_dir = os.path.join(storage_dir, "neuropil_subtraction_plots")
    if os.path.exists(plot_dir):
        shutil.rmtree(plot_dir)

    try:
        os.makedirs(plot_dir)
    except:
        pass

    logging.info("Neuropil correcting '%s'", trace_file)

    ########################################################################
    # process data

    try:
        roi_traces = h5py.File(trace_file, "r")
    except:
        logging.error("Error: unable to open ROI trace file '%s'", trace_file)
        raise

    try:
        neuropil_traces = h5py.File(neuropil_file, "r")
    except:
        logging.error("Error: unable to open neuropil trace file '%s'",
                      neuropil_file)
        raise
    '''
    get number of traces, length, etc.
    '''
    num_traces, T = roi_traces['data'].shape
    T_orig = T
    T_cross_val = int(T / 2)
    if (T - T_cross_val > T_cross_val):
        T = T - 1

    # make sure that ROI and neuropil trace files are organized the same
    n_id = neuropil_traces["roi_names"][:].astype(str)
    r_id = roi_traces["roi_names"][:].astype(str)
    logging.info("Processing %d traces", len(n_id))
    assert len(n_id) == len(
        r_id), "Input trace files are not aligned (ROI count)"
    for i in range(len(n_id)):
        assert n_id[i] == r_id[
            i], "Input trace files are not aligned (ROI IDs)"
    '''
    initialize storage variables and analysis routine
    '''
    r_list = [None] * num_traces
    RMSE_list = [-1] * num_traces
    roi_names = n_id
    corrected = np.zeros((num_traces, T_orig))
    r_vals = [None] * num_traces

    for n in range(num_traces):
        roi = roi_traces['data'][n]
        neuropil = neuropil_traces['data'][n]

        if np.any(np.isnan(neuropil)):
            logging.warning(
                "neuropil trace for roi %d contains NaNs, skipping", n)
            continue

        if np.any(np.isnan(roi)):
            logging.warning("roi trace for roi %d contains NaNs, skipping", n)
            continue

        r = None

        logging.info("Correcting trace %d (roi %s)", n, str(n_id[n]))
        results = estimate_contamination_ratios(roi, neuropil)
        logging.info("r=%f err=%f it=%d", results["r"], results["err"],
                     results["it"])

        r = results["r"]
        fc = roi - r * neuropil
        RMSE_list[n] = results["err"]
        r_vals[n] = results["r_vals"]

        debug_plot(os.path.join(plot_dir, "initial_%04d.png" % n), roi,
                   neuropil, fc, r, results["r_vals"], results["err_vals"])

        # mean of the corrected trace must be positive
        if fc.mean() > 0:
            r_list[n] = r
            corrected[n, :] = fc
        else:
            logging.warning("fc has negative baseline, skipping this r value")

    # compute mean valid r value
    r_mean = np.array([r for r in r_list if r is not None]).mean()

    # fill in empty r values
    for n in range(num_traces):
        roi = roi_traces['data'][n]
        neuropil = neuropil_traces['data'][n]

        if r_list[n] is None:
            logging.warning("Error estimated r for trace %d. Setting to zero.",
                            n)
            r_list[n] = 0
            corrected[n, :] = roi

        # save a debug plot
        debug_plot(os.path.join(plot_dir, "final_%04d.png" % n), roi, neuropil,
                   corrected[n, :], r_list[n])

        # one last sanity check
        eps = -0.0001
        if np.mean(corrected[n, :]) < eps:
            raise Exception(
                "Trace %d baseline is still negative value after correction" %
                n)

        if r_list[n] < 0.0:
            raise Exception("Trace %d ended with negative r" % n)

    ########################################################################
    # write out processed data

    try:
        savefile = os.path.join(storage_dir, "neuropil_correction.h5")
        hf = h5py.File(savefile, 'w')
        hf.create_dataset("r", data=r_list)
        hf.create_dataset("RMSE", data=RMSE_list)
        hf.create_dataset("FC", data=corrected, compression="gzip")
        hf.create_dataset("roi_names", data=roi_names.astype(np.string_))

        for n in range(num_traces):
            r = r_vals[n]
            if r is not None:
                hf.create_dataset("r_vals/%d" % n, data=r)
        hf.close()
    except:
        logging.error("Error creating output h5 file")
        raise

    roi_traces.close()
    neuropil_traces.close()

    jout = copy.copy(jin)
    jout["neuropil_correction"] = savefile
    module.write_output_data(jout)

    logging.info("finished")
コード例 #3
0
def test_brain_observatory_experiment_containers_notebook(boc):
    targeted_structures = boc.get_all_targeted_structures()
    visp_ecs = boc.get_experiment_containers(targeted_structures=['VISp'])
    depths = boc.get_all_imaging_depths()
    stims = boc.get_all_stimuli()
    cre_lines = boc.get_all_cre_lines()
    cux2_ecs = boc.get_experiment_containers(cre_lines=['Cux2-CreERT2'])
    cux2_ec_id = cux2_ecs[-1]['id']
    exps = boc.get_ophys_experiments(experiment_container_ids=[cux2_ec_id])
    exp = boc.get_ophys_experiments(experiment_container_ids=[cux2_ec_id],
                                    stimuli=[stim_info.STATIC_GRATINGS])[0]
    exp = boc.get_ophys_experiment_data(exp['id'])

    assert set(depths) == set([
        175, 185, 195, 200, 205, 225, 250, 265, 275, 276, 285, 300, 320, 325,
        335, 350, 365, 375, 390, 400, 550, 570, 625
    ])

    expected_stimuli = [
        'drifting_gratings', 'locally_sparse_noise',
        'locally_sparse_noise_4deg', 'locally_sparse_noise_8deg',
        'natural_movie_one', 'natural_movie_three', 'natural_movie_two',
        'natural_scenes', 'spontaneous', 'static_gratings'
    ]

    assert set(stims) == set(expected_stimuli)

    expected_cre_lines = [
        u'Cux2-CreERT2', u'Emx1-IRES-Cre', u'Fezf2-CreER', u'Nr5a1-Cre',
        u'Ntsr1-Cre_GN220', u'Pvalb-IRES-Cre', u'Rbp4-Cre_KL100',
        u'Rorb-IRES2-Cre', u'Scnn1a-Tg3-Cre', u'Slc17a7-IRES2-Cre',
        u'Sst-IRES-Cre', u'Tlx3-Cre_PL56', u'Vip-IRES-Cre'
    ]

    assert set(cre_lines) == set(expected_cre_lines)

    cells = boc.get_cell_specimens()

    cells = pd.DataFrame.from_records(cells)

    # find direction selective cells in VISp
    visp_ec_ids = [ec['id'] for ec in visp_ecs]
    visp_cells = cells[cells['experiment_container_id'].isin(visp_ec_ids)]

    # significant response to drifting gratings stimulus
    sig_cells = visp_cells[visp_cells['p_dg'] < 0.05]

    # direction selective cells
    dsi_cells = sig_cells[(sig_cells['dsi_dg'] > 0.5)
                          & (sig_cells['dsi_dg'] < 1.5)]
    #assert len(cells) == 27124
    assert len(cells) > 0
    #assert len(visp_cells) == 16031
    assert len(visp_cells) > 0
    #assert len(sig_cells) == 8669
    assert len(sig_cells) > 0
    #assert len(dsi_cells) == 4943
    assert len(dsi_cells) > 0

    # find experiment containers for those cells
    dsi_ec_ids = dsi_cells['experiment_container_id'].unique()

    # Download the ophys experiments containing the drifting gratings stimulus for VISp experiment containers
    dsi_exps = boc.get_ophys_experiments(experiment_container_ids=dsi_ec_ids,
                                         stimuli=[stim_info.DRIFTING_GRATINGS])

    # pick a direction-selective cell and find its NWB file
    dsi_cell = dsi_cells.iloc[0]

    # figure out which ophys experiment has the drifting gratings stimulus for the cell's experiment container
    cell_exp = boc.get_ophys_experiments(
        experiment_container_ids=[dsi_cell['experiment_container_id']],
        stimuli=[stim_info.DRIFTING_GRATINGS])[0]

    data_set = boc.get_ophys_experiment_data(cell_exp['id'])

    # Fluorescence
    dsi_cell_id = dsi_cell['cell_specimen_id']
    time, raw_traces = data_set.get_fluorescence_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, demixed_traces = data_set.get_demixed_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, neuropil_traces = data_set.get_neuropil_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, corrected_traces = data_set.get_corrected_fluorescence_traces(
        cell_specimen_ids=[dsi_cell_id])
    _, dff_traces = data_set.get_dff_traces(cell_specimen_ids=[dsi_cell_id])

    # ROI Masks
    data_set = boc.get_ophys_experiment_data(510221121)

    # get the specimen IDs for a few cells
    cids = data_set.get_cell_specimen_ids()[:15:5]

    # get masks for specific cells
    roi_mask_list = data_set.get_roi_mask(cell_specimen_ids=cids)

    # make a mask of all ROIs in the experiment
    all_roi_masks = data_set.get_roi_mask_array()
    combined_mask = all_roi_masks.max(axis=0)

    max_projection = data_set.get_max_projection()

    # ROI Analysis
    # example loading drifing grating data
    data_set = boc.get_ophys_experiment_data(512326618)
    dg = DriftingGratings(data_set)

    # filter for visually responding, selective cells
    vis_cells = (dg.peak.ptest_dg < 0.05) & (dg.peak.peak_dff_dg > 3)
    osi_cells = vis_cells & (dg.peak.osi_dg > 0.5) & (dg.peak.osi_dg <= 1.5)
    dsi_cells = vis_cells & (dg.peak.dsi_dg > 0.5) & (dg.peak.dsi_dg <= 1.5)

    # 2-d tf vs. ori histogram
    # tfval = 0 is used for the blank sweep, so we are ignoring it here
    os = np.zeros((len(dg.orivals), len(dg.tfvals) - 1))
    ds = np.zeros((len(dg.orivals), len(dg.tfvals) - 1))

    for i, trial in dg.peak[osi_cells].iterrows():
        os[trial.ori_dg, trial.tf_dg - 1] += 1

    for i, trial in dg.peak[dsi_cells].iterrows():
        ds[trial.ori_dg, trial.tf_dg - 1] += 1

    max_count = max(os.max(), ds.max())

    # Neuropil correction
    data_set = boc.get_ophys_experiment_data(569407590)
    csid = data_set.get_cell_specimen_ids()[0]

    time, demixed_traces = data_set.get_demixed_traces(
        cell_specimen_ids=[csid])
    _, neuropil_traces = data_set.get_neuropil_traces(cell_specimen_ids=[csid])

    results = estimate_contamination_ratios(demixed_traces[0],
                                            neuropil_traces[0])
    correction = demixed_traces[0] - results['r'] * neuropil_traces[0]
    _, corrected_traces = data_set.get_corrected_fluorescence_traces(
        cell_specimen_ids=[csid])

    # Running Speed and Motion Correction
    data_set = boc.get_ophys_experiment_data(512326618)
    dxcm, dxtime = data_set.get_running_speed()
    mc = data_set.get_motion_correction()

    assert True