コード例 #1
0
    def get_running_speed(self) -> RunningSpeed:

        values = self.nwbfile.modules['running'].get_data_interface(
            'speed').data[:]
        timestamps = self.nwbfile.modules['running'].get_data_interface(
            'speed').timestamps[:]

        return RunningSpeed(
            timestamps=timestamps,
            values=values,
        )
コード例 #2
0
ファイル: __init__.py プロジェクト: shirquinn/AllenSDK
def add_running_data_df_to_nwbfile(nwbfile, running_data_df, unit_dict, index_key='timestamps'):
    ''' Adds running speed data to an NWBFile as timeseries in acquisition and processing

    Parameters
    ----------
    nwbfile : pynwb.NWBFile
        File to which runnign speeds will be written
    running_speed : pandas.DataFrame
        Contains 'speed' and 'times', 'v_in', 'vsig', 'dx'
    unit : str, optional
        SI units of running speed values

    Returns
    -------
    nwbfile : pynwb.NWBFile

    '''
    assert running_data_df.index.name == index_key

    running_speed = RunningSpeed(timestamps=running_data_df.index.values,
                                 values=running_data_df['speed'].values)

    add_running_speed_to_nwbfile(nwbfile, running_speed, name='speed', unit=unit_dict['speed'])

    running_mod = nwbfile.modules['running']
    timestamps_ts = running_mod.get_data_interface('speed').timestamps

    running_dx_series = TimeSeries(
        name='dx',
        data=running_data_df['dx'].values,
        timestamps=timestamps_ts,
        unit=unit_dict['dx']
    )

    v_sig = TimeSeries(
        name='v_sig',
        data=running_data_df['v_sig'].values,
        timestamps=timestamps_ts,
        unit=unit_dict['v_sig']
    )

    v_in = TimeSeries(
        name='v_in',
        data=running_data_df['v_in'].values,
        timestamps=timestamps_ts,
        unit=unit_dict['v_in']
    )

    running_mod.add_data_interface(running_dx_series)
    nwbfile.add_acquisition(v_sig)
    nwbfile.add_acquisition(v_in)

    return nwbfile
コード例 #3
0
    def get_running_speed(self) -> RunningSpeed:
        """Get running speed using timestamps from
        self.get_stimulus_timestamps.

        NOTE: Do not correct for monitor delay.

        :returns: RunningSpeed -- a NamedTuple containing the subject's
            timestamps and running speeds (in cm/s)
        """
        running_data_df = self.get_running_data_df()
        if running_data_df.index.name != "timestamps":
            raise DataFrameIndexError(
                f"Expected index to be named 'timestamps' but got "
                "'{running_data_df.index.name}'.")
        return RunningSpeed(timestamps=running_data_df.index.values,
                            values=running_data_df.speed.values)
コード例 #4
0
ファイル: nwb_api.py プロジェクト: vrhaynes/AllenSDK
    def get_running_speed(self, lowpass=True) -> RunningSpeed:
        """
        Gets the running speed
        Parameters
        ----------
        lowpass: bool
            Whether to return the running speed with lowpass filter applied or without

        Returns
        -------
        RunningSpeed:
            The running speed
        """

        interface_name = 'speed' if lowpass else 'speed_unfiltered'
        values = self.nwbfile.modules['running'].get_data_interface(
            interface_name).data[:]
        timestamps = self.nwbfile.modules['running'].get_data_interface(
            interface_name).timestamps[:]

        return RunningSpeed(
            timestamps=timestamps,
            values=values,
        )
コード例 #5
0
def test_get_running_speed(MockBehaviorDataLimsApi):
    expected = RunningSpeed(timestamps=[0.0, 0.1, 0.2],
                            values=[8.0, 15.0, 16.0])
    api = MockBehaviorDataLimsApi
    actual = api.get_running_speed()
    assert expected == actual
コード例 #6
0
 def get_running_speed(self):
     running_data_df = self.get_running_data_df()
     assert running_data_df.index.name == 'timestamps'
     return RunningSpeed(timestamps=running_data_df.index.values,
                         values=running_data_df.speed.values)
コード例 #7
0
def running_speed():
    from allensdk.brain_observatory.running_speed import RunningSpeed
    return RunningSpeed(timestamps=[1., 2., 3.], values=[4, 5, 6])