コード例 #1
0
 def _fit(self, recommender_data, users, items, matrix):
     model = rs.EigenFactorModel(**self.parameter_defaults(
         begin_min=-0.01,
         begin_max=0.01,
         dimension=10,
         seed=67439852,
     ))
     learner = rs.OfflineEigenFactorModelALSLearner(
         **self.parameter_defaults(
             number_of_iterations=3,
             regularization_lambda=0.0001,
             alpha=40,
             implicit=1,
             clear_before_fit=1,
         ))
     learner.set_model(model)
     return (model, learner)
コード例 #2
0
    def _config(self, top_k, seed):
        model = rs.EigenFactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            seed=67439852,
        ))
        offline_learner = rs.OfflineEigenFactorModelALSLearner(
            **self.parameter_defaults(
                number_of_iterations=15,
                regularization_lambda=1e-3,
                alpha=40,
                implicit=1,
                clear_before_fit=1,
            ))
        offline_learner.set_model(model)

        online_learner = rs.PeriodicOfflineLearnerWrapper(
            **self.parameter_defaults(
                write_model=False,
                read_model=False,
                clear_model=False,
                learn=True,
                base_out_file_name="",
                base_in_file_name="",
            ))
        online_learner.set_model(model)
        online_learner.add_offline_learner(offline_learner)

        data_generator_parameters = self.parameter_defaults(
            timeframe_length=0, )
        if (data_generator_parameters['timeframe_length'] == 0):
            data_generator = rs.CompletePastDataGenerator()
        else:
            data_generator = rs.TimeframeDataGenerator(
                **data_generator_parameters)
        online_learner.set_data_generator(data_generator)
        period_computer = rs.PeriodComputer(**self.parameter_defaults(
            period_length=86400,
            start_time=-1,
            period_mode="time",
        ))
        online_learner.set_period_computer(period_computer)

        return (model, online_learner, [])