コード例 #1
0
    def _collect_training_data(self):
        '''Realize training data collection through self-play.'''
        for i in range(self.n_games):
            # generate self-play training data
            self.board = Board(self.row, self.column)
            self.board.set_state()
            AI = Alpha(model_file=self.init_model, use_gpu=self.use_gpu)
            board_states, mcts_probs, current_players = [], [], []
            while (True):
                move, move_probs = AI.self_play(self.row, self.column,
                                                self.board.board_state)
                board_states.append(self.board.current_state())
                mcts_probs.append(move_probs)
                self.board.move(move)
                current_players.append(self.board.get_cur_player())

                end, winner = self.board.who_win()
                if end:
                    winners = np.zeros(len(current_players))
                    if winner != 0:
                        winners[np.array(current_players) == winner] = 1.0
                        winners[np.array(current_players) != winner] = -1.0
                    print(winners)
                    play_data = zip(board_states, mcts_probs, winners)
                    break

            play_data = list(play_data)[:]
            self.episode_len = len(play_data)
            # print(play_data)
            # add data to buffer
            self.buffer.extend(play_data)
            print(len(self.buffer))
    def test_model_finalization(self):
        # Initialize Alpha
        alpha = Alpha(2, {0: 2, 1: 2}, {0: LEN_SIMPLE_OPS, 1: 1})

        # Set alpha_e for edge of op on ground level
        alpha.parameters[0][0][(0, 1)] = nn.Parameter(tensor([10., 0., 0.,
                                                              0.]))
        alpha.parameters[1][0][(0, 1)] = nn.Parameter(tensor([10., 0.]))

        #Create simple model
        model = Model(alpha=alpha,
                      primitives=SIMPLE_OPS,
                      channels_in=1,
                      channels_start=2,
                      stem_multiplier=1,
                      num_classes=5,
                      test_mode=True)

        # Input
        x = tensor([[
            # feature 1
            [[1.]]
        ]])

        # Expected output
        y = tensor([[
            # feature 1
            [[2.]]
        ]])

        learnt_model = LegacyLearntModel(model)
        assert (learnt_model(x).equal(y))
コード例 #3
0
    def __init__(self):
        super(QtradeEnv, self).__init__()
        self.root_dir = '/Users/liuyehong/Dropbox/CICC/Algorithm_Trading/Platform2/OHLC/data/1Min/'
        self.list_dir = [d for d in os.listdir(self.root_dir) if '.csv' in d]
        self.df_dir = np.random.choice(self.list_dir)
        self.df = pd.read_csv(self.root_dir + self.df_dir)
        self.alpha = Alpha(self.df)
        self.cost = 0  #-0.00005
        self.interest_rate = 0 / 240 / 240  # internal interest rate (necessary to avoid stuck of long-term training.)
        self.window = 50
        self.cash = 1
        self.stock = 0
        self.t = self.window + 1
        self.i = 0
        self.T = len(self.df)
        self.total_steps = int(self.T / 5.)
        self.list_asset = np.ones(self.T)
        self.list_holding = np.ones(self.T)

        # alpha
        self.close = self.alpha.close
        self.high = self.alpha.high
        self.low = self.alpha.low
        self.open = self.alpha.open
        self.vol = self.alpha.vol
        self.close_diff = self.alpha.close_diff()
        self.high_diff = self.alpha.high_diff()
        self.low_diff = self.alpha.low_diff()
        self.open_diff = self.alpha.open_diff()

        self.ma = self.alpha.moving_average(window=self.window)
        self.ema = self.alpha.EMA(window=self.window)
        self.dema = self.alpha.DEMA(window=self.window)
        self.kama = self.alpha.KAMA(window=self.window)
        self.sma = self.alpha.SMA(window=self.window)
        self.tema = self.alpha.TEMA(window=self.window)
        self.trima = self.alpha.TRIMA(window=self.window)
        self.linearreg_slope = self.alpha.LINEARREG_SLOPE(window=self.window)

        self.mstd = self.alpha.moving_std(window=self.window)
        self.bollinger_lower_bound = self.alpha.bollinger_lower_bound(
            window=self.window, width=1)
        self.bollinger_upper_bound = self.alpha.bollinger_upper_bound(
            window=self.window, width=1)
        self.moving_max = self.alpha.moving_max(window=self.window)
        self.moving_min = self.alpha.moving_min(window=self.window)
        self.moving_med = self.alpha.moving_med(window=self.window)

        # Actions of the format Buy x%, Sell x%, Hold, etc.
        # Action space range must be symetric and the order matters.

        self.action_space = spaces.Box(low=np.array([-np.inf, -np.inf]),
                                       high=np.array([np.inf, np.inf]),
                                       dtype=np.float16)

        # Prices contains the OHCL values for the last five prices
        self.observation_space = spaces.Box(low=-np.inf,
                                            high=np.inf,
                                            shape=(1, self.window, 4),
                                            dtype=np.float16)
コード例 #4
0
ファイル: states.py プロジェクト: oco14/gameOfLife
 def __init__(self):
   
     super(Window,self).__init__()
     self.set_size(600,600)
     self.alpha = Alpha(self.get_size()[0],
                                  self.get_size()[1],
                                  10)
     pyglet.clock.schedule_interval(self.update,1.0/30.0)
コード例 #5
0
ファイル: analogy.py プロジェクト: morenomitrovic/kapycat
 def f1(self):
     if self.x.i1 <= self.y.i1 <= self.z.i1:
         i = self.y.i1 - self.x.i1 + self.z.i1
     elif self.y.i1 > self.z.i1 > self.x.i1:
         i = Alpha.len() - self.z.i1
     else:
         i = self.y.i1 + (self.x.i1 - self.z.i1)
     print("Meow: ", Alpha.get(i))
     print("This cat ♥ pretending to be smart.")
コード例 #6
0
    def test_2level(self):
        '''
    Testing HierarchicalOperation create_dag with 2 levels.
    '''
        x = tensor([[
            # feature 1
            [[1, 1], [1, 1]]
        ]])

        # Initialize Alpha
        alpha = Alpha(2, {0: 3, 1: 3}, {0: LEN_SIMPLE_OPS, 1: 1})

        # Create hierarchical operation
        hierarchical_op = HierarchicalOperation.create_dag(
            level=1,
            alpha=alpha,
            alpha_dag=alpha.parameters[1][0],
            primitives=SIMPLE_OPS,
            channels_in=1)

        y = tensor([[[[0.7500, 0.7500], [0.7500, 0.7500]],
                     [[1.1250, 1.1250], [1.1250, 1.1250]],
                     [[0.5625, 0.5625], [0.5625, 0.5625]],
                     [[0.84375, 0.84375], [0.84375, 0.84375]],
                     [[0.84375, 0.84375], [0.84375, 0.84375]],
                     [[1.265625, 1.265625], [1.265625, 1.265625]]]])

        assert (y.equal(hierarchical_op(x)))
コード例 #7
0
    def test_1level(self):
        '''
    Testing MNAS with just 1 level.
    Equivalent to darts in this case. Only Mixed Operations of primitives on nodes.
    Only tests base case of create_dag.
    '''
        x = tensor([[
            # feature 1
            [[1, 1], [1, 1]]
        ]])

        # Initialize Alpha
        alpha = Alpha(1, {0: 3}, {0: LEN_SIMPLE_OPS})

        hierarchical_op = HierarchicalOperation.create_dag(
            level=0,
            alpha=alpha,
            alpha_dag=alpha.parameters[0][0],
            primitives=SIMPLE_OPS,
            channels_in=1)

        y = tensor([[
            # feature 1
            [[1.5, 1.5], [1.5, 1.5]],
            # feature 2
            [[2.25, 2.25], [2.25, 2.25]]
        ]])

        assert (y.equal(hierarchical_op(x)))
コード例 #8
0
    def _AI_player(self):
        '''the interface for AI
        Parameters required and updated: board status, which side to play 
        Return: the next gomoku piece coordinate (x, y)

        Gomoku Board status: 0 means no pieces, 1 means black pieces and -1 means white pieces
        '''

        self.human = False

        if self.is_start == False:
            return

        # AI_program

        AI = MCTS()
        AI = Alpha(model_file=self.model_file, use_gpu=False)
        [x, y] = AI.play(self.row, self.column, self.board)

        self._draw_piece(x, y, self.is_black)
        self.board[x][y] = self._ternary_op(1, -1, self.is_black)

        self.last_x, self.last_y = x, y
        self._gomoku_who_win()

        self.is_black = not self.is_black
        self.l_info.config(
            text=self._ternary_op('黑方行棋', '白方行棋', self.is_black))
        self.human = True
コード例 #9
0
    def __init__(self,
                 num_levels: int,
                 num_nodes_at_level: Dict[int, int],
                 num_ops_at_level: Dict[int, int],
                 primitives: dict,
                 channels_in: int,
                 beta: float,
                 image_height: int,
                 image_width: int,
                 writer=None,
                 test_mode=False):
        '''
        - Initializes member variables
        - Registers alpha parameters by creating a dummy alpha using the constructor and using get_alpha_level to get the alpha for a given level. This tensor is wrapped with nn.Parameter to indicate that is a Parameter for this controller (thus requires gradient computation with respect to itself). This nn.Parameter is added to the nn.ParameterList that is self.alphas.
        - Registers weights parameters by creating a model from aforementioned dummy alpha
        '''
        # Superclass constructor
        super().__init__()

        # Initialize member variables
        self.num_levels = num_levels
        self.num_nodes_at_level = num_nodes_at_level
        self.num_ops_at_level = num_ops_at_level
        self.primitives = primitives
        self.channels_in = channels_in
        self.beta = beta
        self.writer = writer

        # Initialize Alpha
        self.alpha = Alpha(num_levels=self.num_levels,
                           num_nodes_at_level=self.num_nodes_at_level,
                           num_ops_at_level=self.num_ops_at_level)

        # Initialize model with initial alpha,
        self.model = BetaVAE(alpha=self.alpha,
                             beta=beta,
                             primitives=self.primitives,
                             channels_in=self.channels_in,
                             image_height=image_height,
                             image_width=image_width,
                             writer=writer,
                             test_mode=test_mode)

        if not test_mode and torch.cuda.is_available():
            self.model = self.model.cuda()
コード例 #10
0
ファイル: states.py プロジェクト: oco14/gameOfLife
class Window(pyglet.window.Window):
    
    def __init__(self):
      
        super(Window,self).__init__()
        self.set_size(600,600)
        self.alpha = Alpha(self.get_size()[0],
                                     self.get_size()[1],
                                     10)
        pyglet.clock.schedule_interval(self.update,1.0/30.0)

    def on_draw(self):
       
        self.clear()
        self.alpha.draw()
       
    def update(self,dt):
        self.alpha.run_rules()
コード例 #11
0
ファイル: analogy.py プロジェクト: morenomitrovic/kapycat
 def f3(self):
     r1i = abs(self.x.i2 - self.x.i1)
     r1ii = abs(self.x.i3 - self.x.i2)
     r2i = abs(self.y.i2 - self.y.i1)
     r2ii = abs(self.y.i3 - self.y.i2)
     # defining distances between pair-comparanda
     d1 = abs(self.y.i1 - self.x.i3)
     d0 = abs(self.z.i1 - self.y.i3)
     # defining the index-location ingredients for i comparandum and corresponding char u, s.t. alpha[u]=i
     iu1 = self.z.i3 + d1
     iu2 = iu1 + r1i
     iu3 = iu2 + r1ii
     if r1i == r2i and r1ii == r2ii:
         print("Meow = ", Alpha.get(iu1) + Alpha.get(iu2) + Alpha.get(iu3))
     else:
         print(
             "I'm confused but I know I'm in the primary else clause. So there."
         )
コード例 #12
0
    def __init__(self):
        super(QtradeEnv, self).__init__()
        self.dir = './data/BTCUSDT.csv'
        self.df = pd.read_csv(self.dir)
        self.alpha = Alpha(self.df)
        self.cost = 0.00
        self.interest_rate = 0.0/240/240  # internal interest rate
        self.window = 50
        self.cash = 1
        self.stock = 0
        self.t = self.window + 1
        self.T = len(self.df)
        self.steps = 0
        self.list_asset = np.ones(self.T)
        self.list_holding = np.ones(self.T)
        self.list_profit = np.zeros(self.T)

        # alpha
        self.close = self.alpha.close
        self.high = self.alpha.high
        self.low = self.alpha.low
        self.open = self.alpha.open
        self.vol = self.alpha.vol
        self.close_diff = self.alpha.close_diff()
        self.high_diff = self.alpha.high_diff()
        self.low_diff = self.alpha.low_diff()
        self.open_diff = self.alpha.open_diff()

        self.ma = self.alpha.moving_average(window=self.window)
        self.ema = self.alpha.EMA(window=self.window)
        self.mstd = self.alpha.moving_std(window=self.window)
        self.bollinger_lower_bound = self.alpha.bollinger_lower_bound(window=self.window, width=1)
        self.bollinger_upper_bound = self.alpha.bollinger_upper_bound(window=self.window, width=1)

        # Actions of the format Buy x%, Sell x%, Hold, etc.
        # Action space range must be symetric and the order matters.

        self.action_space = spaces.Box(
            low=np.array([-np.inf, -np.inf]), high=np.array([np.inf, np.inf]), dtype=np.float16)

        # Prices contains the OHCL values for the last five prices
        self.observation_space = spaces.Box(
            low=-np.inf, high=np.inf, shape=(1, self.window, 9), dtype=np.float16)
コード例 #13
0
 def run_alpha(self):
     log = []
     log_row = []
     for rows in self.text.get(1.0, END):
         if rows == '\n':
             if log_row != []:
                 log.append(log_row)
             log_row = []
         if rows.isalpha():
             log_row.append(rows)
     #opened_file = deepcopy(self.opened_file)
     if self.radio_v.get() == 2:
         self.alpha = Alpha(log, splines='node')
     else:
         self.alpha = Alpha(log)
     print(self.alpha)
     print("direct succesor:", self.alpha.ds)
     print("causality:",self.alpha.cs)
     print("inversion causality:",self.alpha.inv_cs)
     print("parralell:",self.alpha.pr)
     print("no relation:",self.alpha.ind)
     self.graph_name = self.opened_filename.split('/')[-1][:-4]
     self.alpha.create_graph(self.graph_name, view=False)
     self.show_graph()
コード例 #14
0
    def test_2level_model(self):
        x = tensor([[
            # feature 1
            [[1., 1.], [1., 1.]]
        ]])

        # Initialize Alpha
        alpha = Alpha(2, {0: 3, 1: 3}, {0: LEN_SIMPLE_OPS, 1: 1})

        model = Model(alpha=alpha,
                      primitives=SIMPLE_OPS,
                      channels_in=1,
                      channels_start=2,
                      stem_multiplier=1,
                      num_classes=5)

        raise NotImplementedError
コード例 #15
0
    def __init__(self, str1, str2):

        str1, str2 = list(str1), list(str2)

        fixGenomes(str1, str2)  #fixGenomes remove genes imapeaveis

        print 'Genomas apos remocao de genes imapeaveis: \n%r\n%r' % (str1,
                                                                      str2)

        self.genoma1 = str1
        self.genoma2 = str2

        fmly1 = getFmly(self.genoma1)
        fmly2 = getFmly(self.genoma2)

        # listaDeFamilias = [alpha(posG1, posG2, geneId) para 'gene' em 'Genoma']
        self.listaDeFamilias = [Alpha(fmly1[i], fmly2[i], i) for i in fmly1]
    def test_initialization(self):
        num_levels = 3
        num_nodes_at_level = {0: 3, 1: 3, 2: 3}
        num_ops_at_level = {0: 5, 1: 3, 2: 3}
        testAlpha = Alpha(num_levels, num_nodes_at_level, num_ops_at_level)

        # Check parameters
        for i in range(0, num_levels):
            alpha_i = testAlpha.parameters[i]
            for op_num in range(0, num_ops_at_level[i + 1]):
                for node_a in range(0, num_nodes_at_level[i]):
                    for node_b in range(node_a + 1, num_nodes_at_level[i]):
                        if i == 0:
                            num_parameters = num_ops_at_level[i] + 2
                        else:
                            num_parameters = num_ops_at_level[i] + 1
                        assert (alpha_i[op_num][(node_a, node_b)].equal(
                            zeros(num_parameters)))
from alpha import Alpha
import torch
import util

alpha_norm = Alpha(1, {0: 7}, {0: 8})
alpha_reduce = Alpha(1, {0: 7}, {0: 8})

for edge in alpha_norm.parameters[0][0]:
    alpha_norm.parameters[0][0][edge].requires_grad = False
for edge in alpha_reduce.parameters[0][0]:
    alpha_reduce.parameters[0][0][edge].requires_grad = False

# Set to DARTS Alpha Normal
alpha_norm.parameters[0][0][(0, 2)][2] = 1
alpha_norm.parameters[0][0][(0, 3)][2] = 1
alpha_norm.parameters[0][0][(0, 4)][2] = 1
alpha_norm.parameters[0][0][(1, 2)][2] = 1
alpha_norm.parameters[0][0][(1, 3)][2] = 1
alpha_norm.parameters[0][0][(1, 4)][8] = 1
alpha_norm.parameters[0][0][(1, 5)][8] = 1
alpha_norm.parameters[0][0][(2, 5)][5] = 1

# Set to DARTS Alpha Reduce
alpha_reduce.parameters[0][0][(0, 2)][1] = 1
alpha_reduce.parameters[0][0][(0, 4)][1] = 1
alpha_reduce.parameters[0][0][(1, 2)][1] = 1
alpha_reduce.parameters[0][0][(1, 3)][1] = 1
alpha_reduce.parameters[0][0][(1, 5)][1] = 1
alpha_reduce.parameters[0][0][(2, 3)][8] = 1
alpha_reduce.parameters[0][0][(2, 4)][8] = 1
alpha_reduce.parameters[0][0][(2, 5)][8] = 1
コード例 #18
0
ファイル: analogy.py プロジェクト: morenomitrovic/kapycat
    def f2(self):
        r1 = abs(self.x.i2 - self.x.i1)
        r2 = abs(self.y.i2 - self.y.i1)
        r3 = abs(self.z.i2 - self.z.i1)
        d1 = abs(self.y.i2 - self.x.i1)
        d0 = abs(self.y.i1 - self.x.i2)
        d1_vert1 = abs(self.y.i1 - self.x.i1)
        d1_vert2 = abs(self.x.i2 - self.y.i2)
        iu1 = self.z.i2 + d0
        iu2 = iu1 + r2
        r4 = abs(iu2 - iu1)
        d2 = abs(iu1 - self.z.i2)
        if self.z.i2 >= self.z.i1 >= self.y.i2 >= self.y.i1 >= self.x.i2 >= self.x.i1:
            if (r1 + d1 + r2 + d0 + r3 + d2 + r4) <= Alpha.len():
                if d1_vert1 == d1_vert2:
                    print("Meow = ", Alpha.get(iu1) + Alpha.get(iu2))
                else:
                    iu2 += r1
                    print("Meow = ", Alpha.get(iu1) + Alpha.get(iu2))
            else:
                print(
                    "Meow = ",
                    Alpha.get(iu1 - Alpha.len()) + Alpha.get(
                        (iu2 - Alpha.len())))
            print("This cat ♥ pretending to be smart.")

        elif self.x.i2 > self.y.i2 > self.z.i2 and self.x.i1 < self.y.i1 < self.z.i1:
            r1 = abs(self.y.i1 - self.x.i1)
            iu1 = self.z.i1 + r1
            iu2 = self.z.i2 - r1
            if d1_vert1 == d1_vert2:
                print("Meow = ", Alpha.get(iu1) + Alpha.get(iu2))
            else:
                iu2 -= d12_vert
                print("Meow = ", Alpha.get(iu1) + Alpha.get(iu2))
            print("This cat ♥ pretending to be smart.")
        else:
            # applying to symmetric relations where the answer lies in the interval determined by, say, the first comparandum
            print(
                "I think this requires stochastic reasoning. Are you sure you know what a correct answer would look like?"
            )
コード例 #19
0
class StartMenu:
    def __init__(self):
        self.root = Tk()
        self.root.geometry("700x500") #Width x Height
        self.root.title("Alpha miner")
        self.menubar = Menu(self.root, title="menu")
        self.filemenu = Menu(self.menubar, tearoff=0)
        self.editmenu = Menu(self.menubar, tearoff=0)
        self.runmenu = Menu(self.menubar, tearoff=0)
        self.helpmenu = Menu(self.menubar, tearoff=0)
        
        #self.log = []
        self.opened_filename = ''
        self.opened_file = None
        self.alpha = None
        self.alpha_plus = None
        self.graph_name = ''

    def donothing(self):
        filewin = Toplevel(self.root)
        button = Button(filewin, text="Do nothing button")
        button.pack()

    def open_file(self):
        self.root.filename =  filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("txt files","*.txt"),("all files","*.*")))
        #print(self.root.filename)
        self.opened_filename = self.root.filename
        self.opened_file = read(self.opened_filename)
        print(self.opened_file)
        self.show_log()


    def run_alpha(self):
        log = []
        log_row = []
        for rows in self.text.get(1.0, END):
            if rows == '\n':
                if log_row != []:
                    log.append(log_row)
                log_row = []
            if rows.isalpha():
                log_row.append(rows)
        #opened_file = deepcopy(self.opened_file)
        if self.radio_v.get() == 2:
            self.alpha = Alpha(log, splines='node')
        else:
            self.alpha = Alpha(log)
        print(self.alpha)
        print("direct succesor:", self.alpha.ds)
        print("causality:",self.alpha.cs)
        print("inversion causality:",self.alpha.inv_cs)
        print("parralell:",self.alpha.pr)
        print("no relation:",self.alpha.ind)
        self.graph_name = self.opened_filename.split('/')[-1][:-4]
        self.alpha.create_graph(self.graph_name, view=False)
        self.show_graph()

    
    def run_alpha_plus(self):
        log = []
        log_row = []
        for rows in self.text.get(1.0, END):
            if rows == '\n':
                if log_row != []:
                    log.append(log_row)
                log_row = []
            if rows.isalpha():
                log_row.append(rows)
            
        #print("tu:", log)
        #opened_file = deepcopy(self.opened_file)
        if self.radio_v.get()  == 2:
            self.alpha_plus = AlphaPlus(log, splines='node')
        else:
            self.alpha_plus = AlphaPlus(log)

        print(self.alpha_plus)
        print("causality: ", self.alpha_plus.cs)
        print("inversion causality:",self.alpha_plus.inv_cs)
        print("parallel: ", self.alpha_plus.pr)
        print("direct succession: ", self.alpha_plus.ds)
        print("loop1: ", self.alpha_plus.get_loop1())
        print("loop2: ", self.alpha_plus.get_loop2())
        print("t_prim: ", self.alpha_plus.t_prim)
        print("l1l: ", self.alpha_plus.l1l)
        print("fl1l: ", self.alpha_plus.fl1l)
        print("log_minus_l1l: ", self.alpha_plus.log_minus_l1l())
        print("no relation: ", self.alpha_plus.ind)
        print("log: ", self.alpha_plus.log)
        self.graph_name = self.opened_filename.split('/')[-1][:-4]
        self.alpha_plus.run_alpha()
        self.alpha_plus.run_alpha_plus(self.graph_name)
        self.show_graph()


        #print("tuuuuuutaj: ", self.text.get(1.0, END))
        

    def create_menubar(self):
        self.menubar.add_cascade(label="File", menu=self.filemenu)
        self.menubar.add_cascade(label="Run", menu=self.runmenu)
        self.menubar.add_cascade(label="Help", menu=self.helpmenu)
        

    def create_file_menu(self):
        self.filemenu.add_command(label="Open", command=self.open_file)
        self.filemenu.add_command(label="Save as pdf", command=self.save_graph_as_pdf)
        #self.filemenu.add_command(label="Close", command=self.donothing)
        self.filemenu.add_separator()
        self.filemenu.add_command(label="Exit", command=self.root.quit)
    
    def create_run_menu(self):
        self.runmenu.add_command(label="Run alpha miner", command=self.run_alpha)
        self.runmenu.add_command(label="Run alpha+ miner", command=self.run_alpha_plus)

    def create_help_menu(self):
        #self.helpmenu.add_command(label="Help Index",   command=self.donothing)
        self.helpmenu.add_command(label="About...", command=self.show_about)
    
    def show_about(self):
        messagebox.showinfo("About","""This is the simple python program that uses business mining algorithms: alpha and alpha+ in order to create BPMN graphs.\nLogs:
        Program uses .txt logs as input. Example: a b c d.\n Graphs:\n There are 2 types of graph to choose: node and ortho\n Running program:\n Click run in menu and
        choose type of algorithm: alpha or alpha+.\n Output:\n Program generates BPMN graph and shows it in another window. There is an option in file menu to save 
        generated graph as pdf file.""")
        
    def show_graph(self):
        packs = self.root.pack_slaves()
        for l in packs:
            if str(l) != '.!label' and str(l) != '.!label3' and '.!text' not in str(l):
                l.destroy()
        '''new_window = Toplevel(self.root)
        new_window.title('BPMN graph')
        self.im = PhotoImage(file='../graphs/' + self.graph_name + '.png')
        self.label = Label(new_window, image=self.im)
        self.label.pack()'''
        self.im = PhotoImage(file='../graphs/' + self.graph_name + '.png')
        self.label = Label(image=self.im)
        self.label.pack()

    def save_graph_as_pdf(self):
        self.alpha.G.format = 'pdf'
        self.alpha.G.render('../graphs/' + self.graph_name, view=True)
    
    def selected(self):
        print(self.radio_v.get())

    def add_radio_buttons(self):
        l1 = Label(self.root, 
                text='Log:',
                justify = LEFT,
                padx = 20,
                relief='solid')
        l1.pack()
        l1.place(x=0, y=100)
        self.radio_v = IntVar()
        l2 = Label(self.root, 
                text='Choose graph type',
                justify = LEFT,
                padx = 20,
                relief='solid',
                anchor=SW)
        l2.pack()
        l2.place(x=0,y=0)
        self.r1 = Radiobutton(self.root, 
                text="Ortho",
                padx = 20, 
                variable=self.radio_v, 
                value=1,
                command=self.selected)#.pack(anchor=W)
        self.r1.select()
        self.r1.pack(anchor=W)
        self.r1.place(x=0,y=25)
        self.r2 = Radiobutton(self.root, 
                text="Node",
                padx = 20, 
                variable=self.radio_v, 
                value=2,
                command=self.selected)
        self.r2.deselect()
        self.r2.pack(anchor=W)
        self.r2.place(x=0,y=50)

    def show_log(self):
        packs = self.root.pack_slaves()
        for l in packs:
            print(l)
            if str(l) != '.!label':
                l.destroy()
        log_height = 0
        log = ''
        for row in self.opened_file:
            for task in row:
                log += ' ' + (task)
            log += '\n'
            log_height += 1

        '''Label(self.root, 
                text=log,
                justify = LEFT,
                padx = 20,
                relief='solid').pack()'''
        try:
            self.text.delete(1.0, END)
        except:
            pass
        self.text = Text(self.root, height=log_height+1, width=30)
        self.text.pack()
        self.text.place(x=0,y=125)
        self.text.insert(END, log)

    def show_menu(self):
        self.root.config(menu=self.menubar)
        self.root.mainloop()
コード例 #20
0
def push(project_dir, single):
    alpha = Alpha()
    if single:
        alpha.push_single(project_dir)
    else:
        alpha.push_all(project_dir)
コード例 #21
0
class VAEController(nn.Module):
    '''
    This class is the controller for VAE and has alpha parameters registered in addition to the weights (weights) parameters automatically registered by Pytorch.

    get_weights -> returns weights parameters

    get_alpha_level(level) -> returns parameter (yes singular, as the whole tensor is wrapped as one parameter) corresponding to alpha_level
    '''
    def __init__(self,
                 num_levels: int,
                 num_nodes_at_level: Dict[int, int],
                 num_ops_at_level: Dict[int, int],
                 primitives: dict,
                 channels_in: int,
                 beta: float,
                 image_height: int,
                 image_width: int,
                 writer=None,
                 test_mode=False):
        '''
        - Initializes member variables
        - Registers alpha parameters by creating a dummy alpha using the constructor and using get_alpha_level to get the alpha for a given level. This tensor is wrapped with nn.Parameter to indicate that is a Parameter for this controller (thus requires gradient computation with respect to itself). This nn.Parameter is added to the nn.ParameterList that is self.alphas.
        - Registers weights parameters by creating a model from aforementioned dummy alpha
        '''
        # Superclass constructor
        super().__init__()

        # Initialize member variables
        self.num_levels = num_levels
        self.num_nodes_at_level = num_nodes_at_level
        self.num_ops_at_level = num_ops_at_level
        self.primitives = primitives
        self.channels_in = channels_in
        self.beta = beta
        self.writer = writer

        # Initialize Alpha
        self.alpha = Alpha(num_levels=self.num_levels,
                           num_nodes_at_level=self.num_nodes_at_level,
                           num_ops_at_level=self.num_ops_at_level)

        # Initialize model with initial alpha,
        self.model = BetaVAE(alpha=self.alpha,
                             beta=beta,
                             primitives=self.primitives,
                             channels_in=self.channels_in,
                             image_height=image_height,
                             image_width=image_width,
                             writer=writer,
                             test_mode=test_mode)

        if not test_mode and torch.cuda.is_available():
            self.model = self.model.cuda()

    def forward(self, x):
        return self.model(x)

    def loss(self, x, output):
        return self.model.loss(x, output)

    def entanglement(self, x, output):
        return self.model.entanglement(x, output)

    # Get list of alpha parameters for a level
    def get_alpha_level(self, level):
        return self.alpha.get_alpha_level(level)

    # Get all the weights parameters
    def get_weights(self):
        weights = nn.ParameterList()
        for name, param in self.named_parameters(recurse=True):
            if 'alpha' not in name:
                weights.append(param)
        return weights
コード例 #22
0
def promote(project_dir, alias):
    alpha = Alpha()
    alpha.promote_all(project_dir, alias)
class ModelController(nn.Module):
    '''
    This class is the controller for model and has alpha parameters registered in addition to the weights (weights) parameters automatically registered by Pytorch.

    get_weights -> returns weights parameters

    get_alpha_level(level) -> returns parameter (yes singular, as the whole tensor is wrapped as one parameter) corresponding to alpha_level
    '''
    def __init__(self,
                 num_levels: int,
                 num_nodes_at_level: Dict[int, int],
                 num_ops_at_level: Dict[int, int],
                 primitives: dict,
                 channels_in: int,
                 channels_start: int,
                 stem_multiplier: int,
                 num_classes: int,
                 loss_criterion,
                 num_cells: int,
                 writer=None,
                 test_mode=False):
        '''
        - Initializes member variables
        - Registers alpha parameters by creating a dummy alpha using the constructor and using get_alpha_level to get the alpha for a given level. This tensor is wrapped with nn.Parameter to indicate that is a Parameter for this controller (thus requires gradient computation with respect to itself). This nn.Parameter is added to the nn.ParameterList that is self.alphas.
        - Registers weights parameters by creating a model from aforementioned dummy alpha
        '''
        # Superclass constructor
        super().__init__()

        # Initialize member variables
        self.num_levels = num_levels
        self.num_nodes_at_level = num_nodes_at_level
        self.num_ops_at_level = num_ops_at_level
        self.primitives = primitives
        self.channels_in = channels_in
        self.channels_start = channels_start
        self.stem_multiplier = stem_multiplier
        self.num_classes = num_classes
        self.loss_criterion = loss_criterion
        self.writer = writer
        self.num_cells = num_cells
        self.test_mode = test_mode
        self.graph_added = False

        # Initialize Alpha for both types of cells
        # Normal Cell
        self.alpha_normal = Alpha(num_levels=self.num_levels,
                                  num_nodes_at_level=self.num_nodes_at_level,
                                  num_ops_at_level=self.num_ops_at_level,
                                  randomize=True)

        self.alpha_reduce = Alpha(num_levels=self.num_levels,
                                  num_nodes_at_level=self.num_nodes_at_level,
                                  num_ops_at_level=self.num_ops_at_level,
                                  randomize=True)

        # Initialize model with initial alpha
        self.model = Model(alpha_normal=self.alpha_normal,
                           alpha_reduce=self.alpha_reduce,
                           primitives=self.primitives,
                           channels_in=self.channels_in,
                           channels_start=self.channels_start,
                           stem_multiplier=self.stem_multiplier,
                           num_classes=self.num_classes,
                           num_cells=num_cells,
                           writer=writer,
                           test_mode=test_mode)

        if not test_mode and torch.cuda.is_available():
            self.model = self.model.cuda()

    def forward(self, x, temp=None):
        if self.test_mode and not self.graph_added:
            # Visualize model in tensorboard
            self.writer.add_graph(self.model, x)
            self.graph_added = True
        return self.model(x, temp=temp)

    # Get loss object using loss_criterion
    def loss(self, X, y):
        logits = self.forward(X)
        return self.loss_criterion(logits, y)

    # Get list of alpha parameters for a level
    def get_alpha_level(self, level):
        return self.alpha_normal.get_alpha_level(level).extend(
            self.alpha_reduce.get_alpha_level(level))

    # Get all the weights parameters
    def get_weights(self):
        weights = nn.ParameterList()
        for name, param in self.named_parameters(recurse=True):
            if 'alpha' not in name:
                weights.append(param)
        return weights

    # Sets requires grad to false for alpha params / true for weight params
    def weight_training_mode(self):
        for name, param in self.named_parameters(recurse=True):
            if 'alpha' in name:
                param.requires_grad = False
            else:
                param.requires_grad = True

    # Sets requires grad to false for weight params / true for alpha params
    def alpha_training_mode(self):
        for name, param in self.named_parameters(recurse=True):
            if 'alpha' in name:
                param.requires_grad = True
            else:
                param.requires_grad = False

    # Assumes in alpha training mode overall i.e. weight gradients are turned off
    # Switches gradient off for all other levels
    def alpha_training_mode_for_level(self, level):
        for i in range(self.alpha_normal.num_levels):
            for param in self.alpha_normal.get_alpha_level(i):
                if i == level:
                    param.requires_grad = True
                else:
                    param.requires_grad = False
    def __init__(self,
                 num_levels: int,
                 num_nodes_at_level: Dict[int, int],
                 num_ops_at_level: Dict[int, int],
                 primitives: dict,
                 channels_in: int,
                 channels_start: int,
                 stem_multiplier: int,
                 num_classes: int,
                 loss_criterion,
                 num_cells: int,
                 writer=None,
                 test_mode=False):
        '''
        - Initializes member variables
        - Registers alpha parameters by creating a dummy alpha using the constructor and using get_alpha_level to get the alpha for a given level. This tensor is wrapped with nn.Parameter to indicate that is a Parameter for this controller (thus requires gradient computation with respect to itself). This nn.Parameter is added to the nn.ParameterList that is self.alphas.
        - Registers weights parameters by creating a model from aforementioned dummy alpha
        '''
        # Superclass constructor
        super().__init__()

        # Initialize member variables
        self.num_levels = num_levels
        self.num_nodes_at_level = num_nodes_at_level
        self.num_ops_at_level = num_ops_at_level
        self.primitives = primitives
        self.channels_in = channels_in
        self.channels_start = channels_start
        self.stem_multiplier = stem_multiplier
        self.num_classes = num_classes
        self.loss_criterion = loss_criterion
        self.writer = writer
        self.num_cells = num_cells
        self.test_mode = test_mode
        self.graph_added = False

        # Initialize Alpha for both types of cells
        # Normal Cell
        self.alpha_normal = Alpha(num_levels=self.num_levels,
                                  num_nodes_at_level=self.num_nodes_at_level,
                                  num_ops_at_level=self.num_ops_at_level,
                                  randomize=True)

        self.alpha_reduce = Alpha(num_levels=self.num_levels,
                                  num_nodes_at_level=self.num_nodes_at_level,
                                  num_ops_at_level=self.num_ops_at_level,
                                  randomize=True)

        # Initialize model with initial alpha
        self.model = Model(alpha_normal=self.alpha_normal,
                           alpha_reduce=self.alpha_reduce,
                           primitives=self.primitives,
                           channels_in=self.channels_in,
                           channels_start=self.channels_start,
                           stem_multiplier=self.stem_multiplier,
                           num_classes=self.num_classes,
                           num_cells=num_cells,
                           writer=writer,
                           test_mode=test_mode)

        if not test_mode and torch.cuda.is_available():
            self.model = self.model.cuda()
コード例 #25
0
class QtradeEnv(gym.Env):
    """Custom Environment that follows gym interface"""
    metadata = {'render.modes': ['human']}

    def __init__(self):
        super(QtradeEnv, self).__init__()
        self.dir = './data/BTCUSDT.csv'
        self.df = pd.read_csv(self.dir)
        self.alpha = Alpha(self.df)
        self.cost = 0.00
        self.interest_rate = 0.0/240/240  # internal interest rate
        self.window = 50
        self.cash = 1
        self.stock = 0
        self.t = self.window + 1
        self.T = len(self.df)
        self.steps = 0
        self.list_asset = np.ones(self.T)
        self.list_holding = np.ones(self.T)
        self.list_profit = np.zeros(self.T)

        # alpha
        self.close = self.alpha.close
        self.high = self.alpha.high
        self.low = self.alpha.low
        self.open = self.alpha.open
        self.vol = self.alpha.vol
        self.close_diff = self.alpha.close_diff()
        self.high_diff = self.alpha.high_diff()
        self.low_diff = self.alpha.low_diff()
        self.open_diff = self.alpha.open_diff()

        self.ma = self.alpha.moving_average(window=self.window)
        self.ema = self.alpha.EMA(window=self.window)
        self.mstd = self.alpha.moving_std(window=self.window)
        self.bollinger_lower_bound = self.alpha.bollinger_lower_bound(window=self.window, width=1)
        self.bollinger_upper_bound = self.alpha.bollinger_upper_bound(window=self.window, width=1)

        # Actions of the format Buy x%, Sell x%, Hold, etc.
        # Action space range must be symetric and the order matters.

        self.action_space = spaces.Box(
            low=np.array([-np.inf, -np.inf]), high=np.array([np.inf, np.inf]), dtype=np.float16)

        # Prices contains the OHCL values for the last five prices
        self.observation_space = spaces.Box(
            low=-np.inf, high=np.inf, shape=(1, self.window, 9), dtype=np.float16)


    def _next_observation(self):

        obs = [np.array([
            self.close_diff[self.t - self.window + 1:self.t + 1] / self.close[self.t - self.window + 1],
            self.high_diff[self.t - self.window + 1:self.t + 1] / self.high[self.t - self.window + 1],
            self.open_diff[self.t - self.window + 1:self.t + 1] / self.open[self.t - self.window + 1],
            self.low_diff[self.t - self.window + 1:self.t + 1] / self.low[self.t - self.window + 1],
            self.close[self.t - self.window + 1:self.t + 1] / self.close[self.t - self.window + 1],
            self.high[self.t - self.window + 1:self.t + 1] / self.high[self.t - self.window + 1],
            self.open[self.t - self.window + 1:self.t + 1] / self.open[self.t - self.window + 1],
            self.low[self.t - self.window + 1:self.t + 1] / self.low[self.t - self.window + 1],
            self.list_holding[self.t - self.window + 1:self.t + 1]

        ]).T]

        return obs



    def step(self, action):

        # action[buy/sell/hold]
        print(self.steps, self.t, self.close[self.t]/self.close0, self.list_asset[self.t]/self.asset0, action,self.list_asset[self.t]/self.asset0 -self.close[self.t]/self.close0)
        decision = action[0]
        order_price_b = self.ma[self.t] + self.mstd[self.t] * action[0]
        order_price_s = self.ma[self.t] + self.mstd[self.t] * action[1]

        if self.cash > 0 and order_price_b > self.alpha.close[self.t + 1]:
            take_price = self.alpha.close[self.t + 1]
            self.stock = self.cash / take_price * (1 - self.cost)
            self.cash = 0
            print('buy')

        elif self.stock > 0 and order_price_s < self.alpha.close[self.t + 1]:
            take_price = self.alpha.close[self.t + 1]
            self.cash = self.stock * take_price * (1 - self.cost)
            self.stock = 0
            print('sell')

        self.list_asset[self.t+1] = self.stock*self.alpha.close[self.t+1] + self.cash
        self.list_cash = [self.cash > 0]*self.T
        self.list_holding[self.t+1] = self.cash>0



        reward = (self.list_asset[self.t + 1] - self.list_asset[self.t])/self.list_asset[self.t] #- (self.close[self.t+1]-self.close[self.t])/self.close[self.t]



        done = self.steps > 2000
        self.steps += 1

        obs = self._next_observation()

        self.t += 1
        return obs, reward, done, {}


    def reset(self):
        print('reset')
        self.t = self.window + np.random.random_integers(0, high=self.T-2000)
        self.steps = 0
        self.list_cash = self.T * [1]
        self.list_holding = self.T*[1]


        self.cash = 1
        self.stock = 0
        self.asset0 = 1
        self.close0 = self.close[self.t+1]

        return self._next_observation()

    def render(self, mode='human'):

        pass
コード例 #26
0
class QtradeEnv(gym.Env):
    """Custom Environment that follows gym interface"""
    metadata = {'render.modes': ['human']}

    def __init__(self):
        super(QtradeEnv, self).__init__()
        self.root_dir = '/Users/liuyehong/Dropbox/CICC/Algorithm_Trading/Platform2/OHLC/data/1Min/'
        self.list_dir = [d for d in os.listdir(self.root_dir) if '.csv' in d]
        self.df_dir = np.random.choice(self.list_dir)
        self.df = pd.read_csv(self.root_dir + self.df_dir)
        self.alpha = Alpha(self.df)
        self.cost = 0  #-0.00005
        self.interest_rate = 0 / 240 / 240  # internal interest rate (necessary to avoid stuck of long-term training.)
        self.window = 50
        self.cash = 1
        self.stock = 0
        self.t = self.window + 1
        self.i = 0
        self.T = len(self.df)
        self.total_steps = int(self.T / 5.)
        self.list_asset = np.ones(self.T)
        self.list_holding = np.ones(self.T)

        # alpha
        self.close = self.alpha.close
        self.high = self.alpha.high
        self.low = self.alpha.low
        self.open = self.alpha.open
        self.vol = self.alpha.vol
        self.close_diff = self.alpha.close_diff()
        self.high_diff = self.alpha.high_diff()
        self.low_diff = self.alpha.low_diff()
        self.open_diff = self.alpha.open_diff()

        self.ma = self.alpha.moving_average(window=self.window)
        self.ema = self.alpha.EMA(window=self.window)
        self.dema = self.alpha.DEMA(window=self.window)
        self.kama = self.alpha.KAMA(window=self.window)
        self.sma = self.alpha.SMA(window=self.window)
        self.tema = self.alpha.TEMA(window=self.window)
        self.trima = self.alpha.TRIMA(window=self.window)
        self.linearreg_slope = self.alpha.LINEARREG_SLOPE(window=self.window)

        self.mstd = self.alpha.moving_std(window=self.window)
        self.bollinger_lower_bound = self.alpha.bollinger_lower_bound(
            window=self.window, width=1)
        self.bollinger_upper_bound = self.alpha.bollinger_upper_bound(
            window=self.window, width=1)
        self.moving_max = self.alpha.moving_max(window=self.window)
        self.moving_min = self.alpha.moving_min(window=self.window)
        self.moving_med = self.alpha.moving_med(window=self.window)

        # Actions of the format Buy x%, Sell x%, Hold, etc.
        # Action space range must be symetric and the order matters.

        self.action_space = spaces.Box(low=np.array([-np.inf, -np.inf]),
                                       high=np.array([np.inf, np.inf]),
                                       dtype=np.float16)

        # Prices contains the OHCL values for the last five prices
        self.observation_space = spaces.Box(low=-np.inf,
                                            high=np.inf,
                                            shape=(1, self.window, 4),
                                            dtype=np.float16)

    def _next_observation(self):

        obs = [
            np.array([
                self.close[self.t - self.window + 1:self.t + 1] /
                self.ma[self.t],
                self.high[self.t - self.window + 1:self.t + 1] /
                self.ma[self.t],
                self.open[self.t - self.window + 1:self.t + 1] /
                self.ma[self.t],
                self.low[self.t - self.window + 1:self.t + 1] /
                self.ma[self.t],
                #self.ma[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.ema[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.dema[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.kama[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.sma[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.tema[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.trima[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.bollinger_lower_bound[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #self.bollinger_upper_bound[self.t - self.window + 1:self.t + 1] / self.ma[self.t],
                #np.zeros(self.window), # find optimize window size with constant observation.
                #self.list_holding[self.t - self.window + 1:self.t + 1],
                #self.list_cash[self.t - self.window + 1:self.t + 1],
            ]).T
        ]

        return obs

    def _utility(self, x):  #
        if x > 0:
            return 1 * x
        else:
            return 1 * x

    def step(self, action):

        # action[buy/sell/hold]
        order_price_b = np.floor(
            100 * (self.ma[self.t] + self.mstd[self.t] * action[0])) / 100.
        order_price_s = np.ceil(100 * self.ma[self.t] +
                                self.mstd[self.t] * action[1]) / 100.

        if self.cash > 0 and order_price_b > self.close[self.t]:
            take_price = self.close[self.t]
            self.stock = self.cash / take_price * (1 - self.cost)
            self.cash = 0
            print('buy: ' + str(take_price))
            print(
                self.steps, self.t, self.close[self.t] / self.close0,
                self.list_asset[self.t] / self.asset0, action,
                self.list_asset[self.t] / self.asset0 -
                self.close[self.t] / self.close0)

        elif self.stock > 0 and order_price_s < self.close[self.t]:
            take_price = self.close[self.t]
            self.cash = self.stock * take_price * (1 - self.cost)
            self.stock = 0
            print('sell: ' + str(take_price))
            print(
                self.i, self.steps, self.t, self.close[self.t] / self.close0,
                self.list_asset[self.t] / self.asset0, action,
                self.list_asset[self.t] / self.asset0 -
                self.close[self.t] / self.close0)

        self.list_asset[
            self.t + 1] = self.stock * self.alpha.close[self.t + 1] + self.cash
        self.list_cash = [self.cash > 0] * self.T
        self.list_holding[self.t + 1] = self.cash > 0

        # it is important to use relative return as a reward
        reward = (self.list_asset[self.t + 1] - self.list_asset[self.t])/self.list_asset[self.t] - \
                 (self.close[self.t + 1] - self.close[self.t]) / self.close[self.t]

        if self.cash > 0:
            reward += -self.interest_rate

        done = self.steps > self.total_steps
        self.steps += 1
        obs = self._next_observation()

        self.t += 1
        return obs, reward, done, {}

    def reset(self):
        # To avoid stuck in local opt, it is important to increase the cost step by step
        #if self.cost<0.0005:
        #    self.cost += 0.00001
        #    print('cost'+str(self.cost))
        self.i += 1

        self.df_dir = np.random.choice(self.list_dir)
        print(self.df_dir)
        self.df = pd.read_csv(self.root_dir + self.df_dir)

        print('reset: ' + str(self.i))
        self.t = 1 + self.window + np.random.random_integers(
            0, self.T - self.total_steps - self.window - 1)
        self.list_cash = self.T * [1]
        self.list_holding = self.T * [1]
        self.steps = 0

        self.cash = self.close[self.t]
        self.stock = 0
        self.asset0 = self.close[self.t]
        self.close0 = self.close[self.t]

        return self._next_observation()

    def render(self, mode='human'):

        pass
コード例 #27
0
config = {
    'begin_date': '20140328',
    'end_date': '20170801',
    'data_path': data_path,
    'result_path': result_path,
    'intraday_path': intraday_path,
    'h5_path_5min': h5_path_5min,
    'h5_path_1min': h5_path_1min,
    'data_source': ('volume_price', 'money_flow', 'style'
                    )  # ('volume_price','inter_day','money_flow','financial')
}

print u'计算alpha因子'
print config

psx_alpha = Alpha(config)

#psx_alpha.work_data(data)

psx_alpha.load_data()

time1 = time.time()
print 'load data time = %s seconds' % (time1 - time0)

psx_alpha.get_new(psx_alpha.alpha_worldquant101_60)  #运行alpha_daily_000的因子逻辑

#psx_alpha.get_new(psx_alpha.alpha_recount_000)
#psx_alpha.get_intraday_1min([alpha.fstcount_1min_000]) #运行日内因子,1min
#psx_alpha.get_intraday_1min([alpha.fstcount_5min_000]) #运行日内因子计算,5min

コード例 #28
0
from alpha import Alpha


def read_logs(path):
    logs = []
    for line in open(path):
        logs.append(tuple(line.split()))
    return logs


logs = read_logs("../logs/log2.txt")
alpha = Alpha(logs)
alpha.create_graph('graph2')