コード例 #1
0
ファイル: suggestion.py プロジェクト: h2k/TradingBot-1
 def __init__(self, symbols):
     self.ts = TimeSeries(key="84WDI082Z0HOREL6", output_format='pandas', indexing_type='date')
     sns.set()
     self.MEAN_ERROR = 0.1
     self.symbols = symbols
     self.stocks_data = None
     self.retrieve_stock_values()
     self.low_risk_range = (0, 10)
     self.medium_risk_range = (10, 20)
     self.high_risk_range = (20, 999)
コード例 #2
0
 def __init__(self, api_key):
     self.ts = TimeSeries(key=api_key, output_format='pandas', indexing_type='date')
     self.cc = CryptoCurrencies(key=api_key, output_format='pandas', indexing_type='date')
     self.nasdaq_stockfile = f'{self.stock_filename}-{datetime.datetime.fromtimestamp(time.time()).strftime("%Y%m%d")}.csv'
     self.stocks = []
     os.makedirs("stock_estimations", exist_ok=True)
     self._download_nasdaq_stocks()
     with open(self.nasdaq_stockfile, "r") as file:
         csv_content = csv.reader(file, delimiter=',', quotechar='"')
         next(csv_content, None)
         for row in csv_content:
             row = list(filter(None, row))
             self.stocks.append(Stock.from_nasdaq(row))
コード例 #3
0
class StockDatabase(object):
    """Download all the available values of known stock"""
    nasdaq_url = "https://old.nasdaq.com/screening/companies-by-name.aspx?letter=0&exchange=nasdaq&render=download"
    stock_filename = "stock_estimations/companylist"

    def __init__(self, api_key):
        self.ts = TimeSeries(key=api_key, output_format='pandas', indexing_type='date')
        self.cc = CryptoCurrencies(key=api_key, output_format='pandas', indexing_type='date')
        self.nasdaq_stockfile = f'{self.stock_filename}-{datetime.datetime.fromtimestamp(time.time()).strftime("%Y%m%d")}.csv'
        self.stocks = []
        os.makedirs("stock_estimations", exist_ok=True)
        self._download_nasdaq_stocks()
        with open(self.nasdaq_stockfile, "r") as file:
            csv_content = csv.reader(file, delimiter=',', quotechar='"')
            next(csv_content, None)
            for row in csv_content:
                row = list(filter(None, row))
                self.stocks.append(Stock.from_nasdaq(row))

    def generate_stock_history(self, stock, time_series="day", output_size="full", interval=None, is_crypto=False):
        if time_series == "intraday":
            data, _ = self.ts.get_intraday(symbol=stock.symbol, outputsize=output_size, interval=interval) if not is_crypto else self.cc.get_digital_currency_intraday(symbol=stock.symbol, output_size=output_size)
        if time_series == "day":
            data, _ = self.ts.get_daily(symbol=stock.symbol, outputsize=output_size) if not is_crypto else self.cc.get_digital_currency_daily(symbol=stock.symbol, market="USD")
        if time_series == "week":
            data, _ = self.ts.get_weekly(symbol=stock.symbol) if not is_crypto else self.cc.get_digital_currency_weekly(symbol=stock.symbol, market="USD")
        if time_series == "month":
            data, _ = self.ts.get_monthly(symbol=stock.symbol) if not is_crypto else self.cc.get_digital_currency_monthly(symbol=stock.symbol, market="USD")
        directory = f'stock_estimations/{stock.symbol}/{datetime.datetime.today().strftime("%d-%m-%Y")}'
        filename = f'{directory}/{stock.symbol}-prices.csv'
        Path(directory).mkdir(parents=True, exist_ok=True)
        with open(filename, 'w+') as out:
            for index, row in data.iterrows():
                out.write(f'{index.replace("-", "")},{row.iloc[0]}\n')
        return filename

    def _download_nasdaq_stocks(self):
        yesterday = datetime.datetime.now() - datetime.timedelta(days=1)
        yesterday_file = f'{self.stock_filename}-{yesterday.strftime("%Y%m%d")}.csv'
        if os.path.exists(yesterday_file):
            os.remove(yesterday_file)
        if os.path.exists(self.nasdaq_stockfile):
            return
        else:
            urllib.request.urlretrieve(self.nasdaq_url, self.nasdaq_stockfile)
コード例 #4
0
ファイル: suggestion.py プロジェクト: h2k/TradingBot-1
class SuggestionEngine(object):
    """
    Basic suggestion using stock volatility and mean returns
    """
    def __init__(self, symbols):
        self.ts = TimeSeries(key="84WDI082Z0HOREL6", output_format='pandas', indexing_type='date')
        sns.set()
        self.MEAN_ERROR = 0.1
        self.symbols = symbols
        self.stocks_data = None
        self.retrieve_stock_values()
        self.low_risk_range = (0, 10)
        self.medium_risk_range = (10, 20)
        self.high_risk_range = (20, 999)

    def suggest(self):
        """
        Suggest a stock
        :return:
        """
        if self.stocks_data.empty:
            self.retrieve_stock_values()
        returns = self.stocks_data.pct_change()
        mean_daily_returns = returns.mean()
        #
        volatilities = returns.std()
        # https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
        combine = pd.DataFrame({'retour': mean_daily_returns * 252,
                                'volatilite du stock': volatilities * 252})
        ret = {
            "buy": {
                "low": [],
                "medium": [],
                "high": []
            },
            "sell": [],
            "result": None
        }
        x = combine["volatilite du stock"].values[:, np.newaxis]
        y = combine["retour"].values
        model = LinearRegression()
        model.fit(x, y)
        linear_reg = model.predict(x)
        # y = ax + b
        combine["Distance"] = y - linear_reg
        # https://seaborn.pydata.org/generated/seaborn.jointplot.html
        g = sns.jointplot("volatilite du stock", "retour", data=combine, kind="reg", height=7)
        for i in range(combine.shape[0]):
            # Under linear regression
            if combine.iloc[i, 2] - self.MEAN_ERROR > 0:
                ret["sell"].append(self.symbols[i])
            else:
                # Check risk threshold
                risk = combine.iloc[i, 1]
                if self.low_risk_range[0] <= risk <= self.low_risk_range[1]:
                    ret["buy"]["low"].append(self.symbols[i])
                elif self.medium_risk_range[0] <= risk <= self.medium_risk_range[1]:
                    ret["buy"]["medium"].append(self.symbols[i])
                else:
                    ret["buy"]["high"].append(self.symbols[i])
            plt.annotate(self.symbols[i], (combine.iloc[i, 1], combine.iloc[i, 0]))
        filename = f'{next(tempfile._get_candidate_names())}-plot.png'
        plt.savefig(filename)
        with open(filename, 'rb') as image_file:
            ret["result"] = base64.b64encode(image_file.read()).decode('utf-8')
        print(ret)
        os.remove(filename)
        return ret

    def retrieve_stock_values(self):
        """
        Retrieve stocks values using AlphaVantage wrapper
        Limit to MAX_STOCKS stocks name at a time
        :return:
        """
        filenames = []
        for symbol in self.symbols:
            data, _ = self.ts.get_daily(symbol=symbol, outputsize="full")
            filename = f'{next(tempfile._get_candidate_names())}.csv'
            filenames.append(filename)
            data.to_csv(path_or_buf=filename)
        dfs = [pd.read_csv(file)[['date', '4. close']] for file in filenames]
        self.stocks_data = reduce(lambda left, right: pd.merge(left, right, on='date'), dfs).iloc[:, 1:]
        [os.remove(f) for f in filenames]
        return True
コード例 #5
0
    def testTradingReloadSavedSimulateSmallInventory(self):
        """
        Test trading by loading data from a user for multiple days

        User have a small inventory
        """
        symbol = "AAPL"
        user = User(None)
        start_capital = 1500
        model = None
        # Create a fake user
        email = f"{''.join(random.choices(string.ascii_uppercase + string.digits, k=10))}@test.com"
        password = ''.join(
            random.choices(string.ascii_uppercase + string.digits, k=10))
        user.create_user("Test", "Test", email, password)
        user.login(email, password)
        self.assertIsNotNone(user.bearer,
                             "Couldn't connect as fake user on API")
        print(f"[*] Testing for user '{email}' with password '{password}'")
        # User has 1500 invested and 1500 available
        self.assertTrue(user.update_balance(start_capital))
        self.assertTrue(user.update_invested_balance(start_capital))
        self.assertEqual(0, user.balance,
                         "User balance wasn't updated properly")
        self.assertEqual(start_capital, user.invested_balance,
                         "User invested balance wasn't updated properly")
        # Load model
        save_file = os.path.join(os.getcwd(), "trade_model.pkl")
        with open(save_file, "rb") as model_file:
            model = pickle.load(model_file)
        self.assertIsNotNone(model, "Couldn't load sklearn model")
        print("[+] Model loaded !")
        ts = TimeSeries(API_KEY, output_format="pandas")
        data, _ = ts.get_daily(symbol=symbol, outputsize="full")
        self.assertIsNotNone(data, "Couldn't retrieve data from AlphaVantage")
        parameters = [data['4. close'].tolist(), data['5. volume'].tolist()]
        minmax = MinMaxScaler(feature_range=(100,
                                             200)).fit(np.array(parameters).T)
        trend = data['4. close'].tolist()
        scaled_parameters = minmax.transform(np.array(parameters).T).T.tolist()
        agent = TradingAgent(model,
                             timeseries=scaled_parameters,
                             real_trend=trend,
                             minmax=minmax,
                             symbol=symbol)
        # User has a small inventory on said stock
        stock_price = data.iloc[0:-120].tail(1)["4. close"].tolist()[0]
        print(f"Stock {symbol} worth {stock_price}/ea")
        user.update_balance(start_capital + (stock_price * 2))
        user.update_invested_balance(start_capital + (stock_price * 2))
        user.update_inventory(symbol, 2, stock_price, "buy")
        # Load user inventory and balance -120
        agent.load_user_info(user)
        print("[+] User info loaded !")
        # Feed 20 days from 100 days ago (so D-120 to D-100)
        agent.load_window(data.iloc[0:-120])
        # Run actions from 100 days to today
        data = data.tail(100)
        buys = []
        sells = []
        for i in range(100):
            print(
                f"Day n°{i} : Invested : {user.invested_balance} | Inventory : {user.inventory}"
            )
            last_data = data.iloc[i]
            self.assertIsNotNone(last_data)
            action = agent.trade([
                last_data["4. close"].tolist(),
                last_data["5. volume"].tolist()
            ])
            if action is not None:
                if action['action'] == 'buy':
                    buys.append(i)
                else:
                    sells.append(i)
        # Create figure to have multiple plots
        fig = plt.figure(figsize=(15, 5))
        plt.plot(data['4. close'],
                 color='r',
                 lw=2.0,
                 label=f'Valeur du stock {symbol}')
        plt.plot(data['4. close'],
                 '^',
                 markersize=8,
                 color='m',
                 label="Signal d'achat",
                 markevery=buys)
        plt.plot(data['4. close'],
                 'v',
                 markersize=8,
                 color='k',
                 label='Signal de vente',
                 markevery=sells)
        print(
            f"Started at {start_capital}, now sitting at total {user.balance + user.invested_balance}"
        )
        invest = (((user.balance + user.invested_balance) - start_capital) /
                  start_capital) * 100
        plt.title(
            f'{symbol} - Simulation pour user sur 100 jours (Gain total : {round(invest)}%)'
        )
        plt.legend()
        plt.savefig(f'{DEST_PLOT_DIR}/{symbol}-user-simulated-trade')
        plt.close(fig)
コード例 #6
0
 def testTradingManually(self):
     """
     Test trading stocks analysis and manually verify results
     """
     ts = TimeSeries(API_KEY, output_format="pandas")
     # Containing old historical data (picked from https://en.wikipedia.org/wiki/List_of_S%26P_500_companies)
     training_stocks = [
         "AMD", "FSV", "ROKU", "TMUS", "FTNT", "KHC", "TRIP", "TXN", "LYFT",
         "FSV", "SINA", "BIIB"
     ]
     # Interesting stocks to tests onto
     up_trends = ["MSFT", "AAPL", "FB", "ADBE", "CTXS"]
     down_trends = ["ALGN", "MYL", "AAL"]
     test_stocks = up_trends + down_trends
     skip = 1
     layer_size = 500
     # 1500 dollars should always be enough
     initial_money = 1500
     output_size = 3
     model = Model(79, layer_size, output_size)
     model_initialized = False
     agent = None
     # We need to train our model first
     for stock in training_stocks:
         print(f"Training on {stock} with {initial_money}$")
         data, _ = ts.get_daily(symbol=stock, outputsize="full")
         self.assertIsNotNone(data,
                              "Couldn't retrieve data from Alphavantage")
         # Take a full year of trading
         data = data.tail(253)
         print(data)
         trend = data['4. close'].tolist()
         parameters = [
             data['4. close'].tolist(), data['5. volume'].tolist()
         ]
         minmax = MinMaxScaler(feature_range=(100, 200)).fit(
             np.array(parameters).T)
         scaled_parameters = minmax.transform(
             np.array(parameters).T).T.tolist()
         if not model_initialized:
             agent = TradingAgent(model, scaled_parameters, skip,
                                  initial_money, trend, minmax)
             # Enable debug mode for test purpose
             agent.es.debug = True
             model_initialized = True
         else:
             # Feed new training data to model without recreating one
             agent.change_data(scaled_parameters, skip, initial_money,
                               trend, minmax)
         # Use 100 epoch for best result
         agent.fit(iterations=100)
     # Model is trained, now test on non-trained stocks
     for stock in test_stocks:
         data, _ = ts.get_daily(symbol=stock, outputsize="full")
         self.assertIsNotNone(data,
                              "Couldn't retrieve data from Alphavantage")
         # Take a full year of trading
         data = data.tail(253)
         data['5. volume'] = data['5. volume'].astype(int)
         trend = data['4. close'].tolist()
         parameters = [
             data['4. close'].tolist(), data['5. volume'].tolist()
         ]
         minmax = MinMaxScaler(feature_range=(100, 200)).fit(
             np.array(parameters).T)
         scaled_parameters = minmax.transform(
             np.array(parameters).T).T.tolist()
         agent.change_data(scaled_parameters, skip, initial_money, trend,
                           minmax)
         buys, sells, total_gain, invest = agent.test_trade()
         # Create figure to have multiple plots
         fig = plt.figure(figsize=(15, 5))
         plt.plot(data['4. close'],
                  color='r',
                  lw=2.0,
                  label=f'Valeur du stock {stock}')
         plt.plot(data['4. close'],
                  '^',
                  markersize=8,
                  color='m',
                  label="Signal d'achat",
                  markevery=buys)
         plt.plot(data['4. close'],
                  'v',
                  markersize=8,
                  color='k',
                  label='Signal de vente',
                  markevery=sells)
         plt.title(f'{stock} - Gain total : {invest}%')
         plt.legend()
         plt.savefig(f'{DEST_PLOT_DIR}/{stock}')
         plt.close(fig)
     agent.save_model()
コード例 #7
0
def trade(bearer):
    """
    Trade for a user
    """
    ts = TimeSeries("84WDI082Z0HOREL6", output_format="pandas")
    # Load user
    user = User(bearer)
    suggest_engine = SuggestionEngine(symbols=["MSFT", "AAPL", "AMD", "CSCO"])
    suggestion = suggest_engine.suggest()
    # Load model
    model = None
    save_file = os.path.join(os.getcwd(), "trade_model.pkl")
    ret = {
        "suggested": {
            "buy": [],
            "sell": [],
        },
        "checked_symbols": [],
        "actions": []
    }
    with open(save_file, "rb") as model_file:
        model = pickle.load(model_file)
    # Append suggested buy trade to list of checks
    print(f"User has risk {user.get_risk()}")
    symbols_to_check = []
    if len(suggestion["buy"][user.get_risk()]):
        symbols_to_check.extend(suggestion["buy"][user.get_risk()])
        ret["suggested"]["buy"] = suggestion["buy"][user.get_risk()]
    if len(suggestion["sell"]):
        symbols_to_check.extend(suggestion["sell"])
        ret["suggested"]["sell"] = suggestion["sell"]
    if len(user.inventory):
        symbols_to_check.extend(
            [item["stock"]["symbol"] for item in user.inventory])
    # Run a check on all the user inventory + suggested trade offers (both sell and buy)
    ret["checked_symbols"] = symbols_to_check
    time.sleep(60)
    for symbol in symbols_to_check:
        print(f"TradingAgent: Checking {symbol}...")
        data, _ = ts.get_daily(symbol=symbol, outputsize="compact")
        parameters = [data['4. close'].tolist(), data['5. volume'].tolist()]
        minmax = MinMaxScaler(feature_range=(100,
                                             200)).fit(np.array(parameters).T)
        trend = data['4. close'].tolist()
        scaled_parameters = minmax.transform(np.array(parameters).T).T.tolist()
        agent = TradingAgent(model,
                             timeseries=scaled_parameters,
                             real_trend=trend,
                             minmax=minmax,
                             symbol=symbol)
        # Load user inventory
        agent.load_user_info(user)
        # Feed 20 days
        agent.load_window(data.iloc[0:-20])
        last_data = data.tail(1)
        print(f"Data loaded for {symbol}, taking decision...")
        action = agent.trade([
            last_data["4. close"].tolist()[0],
            last_data["5. volume"].tolist()[0]
        ])
        if action is not None:
            ret["actions"].append(action)
        print(f"Action for {symbol} : {action}")
    return ret