コード例 #1
0
def prepare_data(engine: SqlEngine,
                 factors: Union[Transformer, Iterable[object]],
                 start_date: str,
                 end_date: str,
                 frequency: str,
                 universe: Universe,
                 benchmark: int,
                 warm_start: int = 0):
    if warm_start > 0:
        p = Period(frequency)
        p = Period(length=-warm_start * p.length(), units=p.units())
        start_date = advanceDateByCalendar('china.sse', start_date,
                                           p).strftime('%Y-%m-%d')

    dates = makeSchedule(start_date,
                         end_date,
                         frequency,
                         calendar='china.sse',
                         dateRule=BizDayConventions.Following,
                         dateGenerationRule=DateGeneration.Forward)

    dates = [d.strftime('%Y-%m-%d') for d in dates]

    horizon = map_freq(frequency)

    if isinstance(factors, Transformer):
        transformer = factors
    else:
        transformer = Transformer(factors)

    factor_df = engine.fetch_factor_range(universe,
                                          factors=transformer,
                                          dates=dates).sort_values(
                                              ['trade_date', 'code'])
    alpha_logger.info("factor data loading finished")
    return_df = engine.fetch_dx_return_range(universe,
                                             dates=dates,
                                             horizon=horizon)
    alpha_logger.info("return data loading finished")
    industry_df = engine.fetch_industry_range(universe, dates=dates)
    alpha_logger.info("industry data loading finished")
    benchmark_df = engine.fetch_benchmark_range(benchmark, dates=dates)
    alpha_logger.info("benchmark data loading finished")

    df = pd.merge(factor_df, return_df, on=['trade_date', 'code']).dropna()
    df = pd.merge(df, benchmark_df, on=['trade_date', 'code'], how='left')
    df = pd.merge(df, industry_df, on=['trade_date', 'code'])
    df['weight'] = df['weight'].fillna(0.)

    return dates, df[['trade_date', 'code', 'dx']], df[[
        'trade_date', 'code', 'weight', 'isOpen', 'industry_code', 'industry'
    ] + transformer.names]
コード例 #2
0
ファイル: data_preparing.py プロジェクト: rlcjj/alpha-mind
def prepare_data(engine: SqlEngine,
                 factors: Union[Transformer, Iterable[object]],
                 start_date: str,
                 end_date: str,
                 frequency: str,
                 universe: Universe,
                 benchmark: int,
                 warm_start: int = 0,
                 fit_target: Union[Transformer, object] = None):
    if warm_start > 0:
        p = Period(frequency)
        p = Period(length=-warm_start * p.length(), units=p.units())
        start_date = advanceDateByCalendar('china.sse', start_date,
                                           p).strftime('%Y-%m-%d')

    dates = makeSchedule(start_date,
                         end_date,
                         frequency,
                         calendar='china.sse',
                         dateRule=BizDayConventions.Following,
                         dateGenerationRule=DateGeneration.Forward)

    dates = [d.strftime('%Y-%m-%d') for d in dates]

    horizon = map_freq(frequency)

    if isinstance(factors, Transformer):
        transformer = factors
    else:
        transformer = Transformer(factors)

    factor_df = engine.fetch_factor_range(universe,
                                          factors=transformer,
                                          dates=dates).sort_values(
                                              ['trade_date', 'code'])
    alpha_logger.info("factor data loading finished")

    if fit_target is None:
        target_df = engine.fetch_dx_return_range(universe,
                                                 dates=dates,
                                                 horizon=horizon)
    else:
        one_more_date = advanceDateByCalendar('china.sse', dates[-1],
                                              frequency)
        target_df = engine.fetch_factor_range_forward(universe,
                                                      factors=fit_target,
                                                      dates=dates +
                                                      [one_more_date])
        target_df = target_df[target_df.trade_date.isin(dates)]
        target_df = target_df.groupby('code').apply(
            lambda x: x.fillna(method='pad'))
    alpha_logger.info("fit target data loading finished")

    industry_df = engine.fetch_industry_range(universe, dates=dates)
    alpha_logger.info("industry data loading finished")
    benchmark_df = engine.fetch_benchmark_range(benchmark, dates=dates)
    alpha_logger.info("benchmark data loading finished")

    df = pd.merge(factor_df, target_df, on=['trade_date', 'code']).dropna()
    df = pd.merge(df, benchmark_df, on=['trade_date', 'code'], how='left')
    df = pd.merge(df, industry_df, on=['trade_date', 'code'])
    df['weight'] = df['weight'].fillna(0.)
    df.dropna(inplace=True)

    return dates, df[[
        'trade_date', 'code', 'dx'
    ]], df[['trade_date', 'code', 'weight', 'industry_code', 'industry'] +
           transformer.names]