コード例 #1
0
def dataframe_config():
    '''
        Creates the definition/config of the data frame (DF).

        :return a list of DF configs
    '''
    # Set up categorical binning
    # use simple binning for HT and N_jet
    htbin = Binning(boundaries=[200, 400, 600, 900, 1200])
    njetbin = Binning(boundaries=[1, 2, 3, 4, 5, 6])
    # Echo simply returns the value it gets
    nbjetbin = Echo()
    # explicit version
    # nbjetbin = Echo(nextFunc = lambda x: x+1, valid = lambda x: True)
    # add HEPPY component name binning, has no rules to produce the next bin
    # component names are strings!
    component = Echo(nextFunc=None)

    # a list of DF configs
    df_configs = [
        dict(
            # which tree branches to read in
            keyAttrNames=('componentName', 'ht40', 'nJet40', 'nBJet40'),
            # which columns in the DF they should be mapped to
            keyOutColumnNames=('component', 'htbin', 'njetbin', 'nbjetbin'),
            # the binning for the categories
            binnings=(component, htbin, njetbin, nbjetbin),
            # list of weight branches that are multiplied together for the
            # final event weight
            weight=WeightCalculatorProduct(['genWeight'])),
    ]

    return df_configs
コード例 #2
0
def dataframe_config():
    '''
        Creates the definition/config of the data frame (DF).

        :return a list of DF configs
    '''
    # Set up categorical binning
    # use simple binning for HT and N_jet
    htbin = Binning(boundaries=[200, 400, 600, 900, 1200])
    njetbin = Binning(boundaries=[1, 2, 3, 4, 5, 6])
    # Echo simply returns the value it gets
    nbjetbin = Echo()
    # explicit version
    # nbjetbin = Echo(nextFunc = lambda x: x+1, valid = lambda x: True)

    # a list of DF configs
    df_configs = [
        dict(
            # which tree branches to read in
            keyAttrNames=('ht40', 'nJet40', 'nBJet40'),
            # which columns in the DF they should be mapped to
            keyOutColumnNames=('htbin', 'njetbin', 'nbjetbin'),
            # the binning for the categories
            binnings=(htbin, njetbin, nbjetbin)
        ),
    ]

    return df_configs
コード例 #3
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_next_None(self):
     binning = Echo(nextFunc = None)
     self.assertIsNone(binning.next( -5))
     self.assertIsNone(binning.next(  0))
     self.assertIsNone(binning.next(  1))
     self.assertIsNone(binning.next(  3))
     self.assertIsNone(binning.next( 10))
コード例 #4
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_next_lambda(self):
     binning = Echo(nextFunc = lambda x: x + 0.1)
     self.assertEqual( -4.9, binning.next( -5))
     self.assertEqual(  0.1, binning.next(  0))
     self.assertEqual(  1.1, binning.next(  1))
     self.assertEqual(  3.1, binning.next(  3))
     self.assertEqual( 10.1, binning.next( 10))
コード例 #5
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_next_plus2(self):
     binning = Echo(nextFunc = plus2)
     self.assertEqual( -3, binning.next( -5))
     self.assertEqual(  2, binning.next(  0))
     self.assertEqual(  3, binning.next(  1))
     self.assertEqual(  5, binning.next(  3))
     self.assertEqual( 12, binning.next( 10))
コード例 #6
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_next_default(self):
     binning = Echo()
     self.assertEqual( -4, binning.next( -5))
     self.assertEqual(  1, binning.next(  0))
     self.assertEqual(  2, binning.next(  1))
     self.assertEqual(  4, binning.next(  3))
     self.assertEqual( 11, binning.next( 10))
コード例 #7
0
def _create_one_dimension(stage_name, _in, _out, _bins=None, _index=None):
    if not isinstance(_in, six.string_types):
        msg = "{}: binning dictionary contains non-string value for 'in'"
        raise BadBinnedDataframeConfig(msg.format(stage_name))
    if not isinstance(_out, six.string_types):
        msg = "{}: binning dictionary contains non-string value for 'out'"
        raise BadBinnedDataframeConfig(msg.format(stage_name))
    if _index and not isinstance(_index, six.string_types):
        msg = "{}: binning dictionary contains non-string and non-integer value for 'index'"
        raise BadBinnedDataframeConfig(msg.format(stage_name))

    if _bins is None:
        bin_obj = Echo(nextFunc=None)
    elif isinstance(_bins, dict):
        # - bins: {nbins: 6 , low: 1  , high: 5 , overflow: True}
        # - bins: {edges: [0, 200., 900], overflow: True}
        if "nbins" in _bins and "low" in _bins and "high" in _bins:
            low = _bins["low"]
            high = _bins["high"]
            nbins = _bins["nbins"]
            edges = np.linspace(low, high, nbins + 1)
        elif "edges" in _bins:
            edges = _bins["edges"]
        else:
            msg = "{}: No way to infer binning edges for in={}"
            raise BadBinnedDataframeConfig(msg.format(stage_name, _in))
        bin_obj = Binning(boundaries=edges)
    else:
        msg = "{}: bins is neither None nor a dictionary for in={}"
        raise BadBinnedDataframeConfig(msg.format(stage_name, _in))

    return (str(_in), str(_out), bin_obj, _index)
コード例 #8
0
def prepare_dataframe_configs(weights=[]):
    '''
        Creates the definition/config of the data frame (DF).

        :return a list of DF configs
    '''
    # Set up categorical binning
    jetpt_bin = Binning(boundaries=range(0, 1000, 20))
    njetbin = Echo()

    # a list of DF configs
    base = dict(
        keyAttrNames=('Jet_pt', 'nJet'),
        keyOutColumnNames=('jetpt', 'njet'),
        binnings=(jetpt_bin, njetbin),
    )

    df_configs = {"data": base}
    #else:
    #    df_configs = {}

    #    # List of weight branches that are multiplied together for the final event weight
    #    #
    #    # TODO: Storing the product of these weights as weight_nominal for each
    #    # event would be more efficient, but this needs communication or a
    #    # common interface between a nominal weight scribbler and the DF
    #    # configuration

    #    # Build a dictionary for all the combinations of weights we need to check for systematics
    #    weight_combinations = {"nominal": weights, "unweighted": []}
    #    for weight in weights:
    #        for variation in ["up", "down"]:
    #            variation_name = "{}_{}".format(weight, variation)
    #            weight_combinations[variation_name] = weights + [variation_name]

    #    df_configs = {}
    #    for name, weight_list in weight_combinations.items():
    #        config = copy.copy(base)
    #        if weight_list:
    #            config["weight"] = WeightCalculatorProduct(weight_list)
    #        df_configs[name] = config

    return df_configs
コード例 #9
0
    def test_two(self):
        """
        1:composite
            |- 3:composite
            |  |- 4:counter
            |  |- 5:counter
            |
            |- 7:counter
            |- 8:counter
        """

        keyComposer4 = KeyValueComposer(('var4', ), (Echo(), ))
        counts4 = Count()
        reader4 = Reader(keyComposer4, counts4)
        collector4 = Collector(MockResultsCombinationMethod())

        keyComposer5 = KeyValueComposer(('var5', ), (Echo(), ))
        counts5 = Count()
        reader5 = Reader(keyComposer5, counts5)
        collector5 = Collector(MockResultsCombinationMethod())

        keyComposer7 = KeyValueComposer(('var7', ), (Echo(), ))
        counts7 = Count()
        reader7 = Reader(keyComposer7, counts7)
        collector7 = Collector(MockResultsCombinationMethod())

        keyComposer8 = KeyValueComposer(('var8', ), (Echo(), ))
        counts8 = Count()
        reader8 = Reader(keyComposer8, counts8)
        collector8 = Collector(MockResultsCombinationMethod())

        reader3 = ReaderComposite()
        reader3.add(reader4)
        reader3.add(reader5)

        collector3 = CollectorComposite()
        collector3.add(collector4)
        collector3.add(collector5)

        reader1 = ReaderComposite()
        reader1.add(reader3)
        reader1.add(reader7)
        reader1.add(reader8)

        collector1 = CollectorComposite()
        collector1.add(collector3)
        collector1.add(collector7)
        collector1.add(collector8)

        reader1_ds1 = copy.deepcopy(reader1)
        reader1_ds2 = copy.deepcopy(reader1)

        reader3_ds1 = reader1_ds1.readers[0]
        reader4_ds1 = reader3_ds1.readers[0]
        reader5_ds1 = reader3_ds1.readers[1]
        reader7_ds1 = reader1_ds1.readers[1]
        reader8_ds1 = reader1_ds1.readers[2]

        self.assertIsInstance(reader1_ds1, ReaderComposite)
        self.assertIsInstance(reader3_ds1, ReaderComposite)
        self.assertIsInstance(reader4_ds1, Reader)
        self.assertIsInstance(reader5_ds1, Reader)
        self.assertIsInstance(reader7_ds1, Reader)
        self.assertIsInstance(reader8_ds1, Reader)

        self.assertIsNot(reader1, reader1_ds1)
        self.assertIsNot(reader3, reader3_ds1)
        self.assertIsNot(reader4, reader4_ds1)
        self.assertIsNot(reader5, reader5_ds1)
        self.assertIsNot(reader7, reader7_ds1)
        self.assertIsNot(reader8, reader8_ds1)

        reader3_ds2 = reader1_ds2.readers[0]
        reader4_ds2 = reader3_ds2.readers[0]
        reader5_ds2 = reader3_ds2.readers[1]
        reader7_ds2 = reader1_ds2.readers[1]
        reader8_ds2 = reader1_ds2.readers[2]

        self.assertIsInstance(reader1_ds2, ReaderComposite)
        self.assertIsInstance(reader3_ds2, ReaderComposite)
        self.assertIsInstance(reader4_ds2, Reader)
        self.assertIsInstance(reader5_ds2, Reader)
        self.assertIsInstance(reader7_ds2, Reader)
        self.assertIsInstance(reader8_ds2, Reader)

        self.assertIsNot(reader1, reader1_ds2)
        self.assertIsNot(reader3, reader3_ds2)
        self.assertIsNot(reader4, reader4_ds2)
        self.assertIsNot(reader5, reader5_ds2)
        self.assertIsNot(reader7, reader7_ds2)
        self.assertIsNot(reader8, reader8_ds2)
コード例 #10
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_call(self):
     binning = Echo()
     self.assertEqual(1, binning(1))
     self.assertEqual(2, binning(2))
     self.assertEqual(0, binning(0))
     self.assertEqual(5, binning(5))
コード例 #11
0
ファイル: test_Echo.py プロジェクト: lucien1011/alphatwirl
 def test_valid(self):
     binning = Echo(valid = lambda x: x >= 10)
     self.assertEqual( 13, binning(13))
     self.assertEqual( 10, binning(10))
     self.assertIsNone(binning(7))
コード例 #12
0
tblcfg = [
    dict(outFileName='tbl_met.txt',
         branchNames=('met_pt', ),
         outColumnNames=('met', ),
         binnings=(RoundLog(0.1, 0), ),
         countsClass=Counts),
    dict(outFileName='tbl_jetpt.txt',
         branchNames=('jet_pt', ),
         binnings=(RoundLog(0.1, 0), ),
         indices=(0, ),
         countsClass=Counts),
    dict(outFileName='tbl_njets_nbjets.txt',
         branchNames=('nJet40', 'nBJet40'),
         outColumnNames=('njets', 'nbjets'),
         binnings=(Echo(), Echo()),
         countsClass=Counts),
]

alphaTwirl.addTreeReader(
    analyzerName='treeProducerSusyAlphaT',
    fileName='tree.root',
    treeName='tree',
    tableConfigs=tblcfg,
    eventSelection=None,
)

##__________________________________________________________________||
import cProfile, pstats, StringIO

pr = cProfile.Profile()