コード例 #1
0
def visualise_tsne(tsne_df, save=True, fig_num=15):
    """Visualise tsne plot"""
    tsne_base = alt.Chart(tsne_df).encode(
        x=alt.X("x:Q", title="", axis=alt.Axis(ticks=False, labels=False)),
        y=alt.Y("y:Q", title="", axis=alt.Axis(ticks=False, labels=False)),
    )

    tsne_points = ((
        tsne_base.mark_point(
            filled=True, opacity=0.5, stroke="black",
            strokeOpacity=0.5).encode(
                color=alt.Color("org_type", title="Organisation type"),
                strokeWidth=alt.Stroke("top",
                                       scale=alt.Scale(range=[0, 1]),
                                       legend=None),
                # stroke = alt.value('blue'),
                size=alt.Size("activity:Q", title="Number of papers"),
                facet=alt.Facet("size",
                                columns=2,
                                title="Number of organisations in plot"),
                tooltip=["index"],
            )).interactive().resolve_scale(
                y="independent", x="independent").properties(width=250,
                                                             height=250))

    if save is True:
        save_altair(tsne_points, "fig_15_tsne", driv)

    return tsne_points
コード例 #2
0
def main():
    st.title('Covid-19 SIR Model')
    days=st.slider('Select no. of days :',0,100,1,1)
    Istart=st.slider('Intially infected pop % :',.01,1.0,.01,.01)
    trans_rate=st.slider('Transfer rate :',0,10,1,1)
    reco_rate=st.slider('Recovery rate :',0.0,1.0,0.1,0.01)
    df = corona(Istart,trans_rate,reco_rate,100,days)

    df_melt=pd.melt(df,id_vars='Days',value_vars=['Suspect','Infected','Recovered'],var_name='Legend',value_name='% of Population')
    st.altair_chart(alt.layer(
        Charts(df_melt,'Infected','darkred'),
        Charts(df_melt,'Suspect','darkblue'),
        Charts(df_melt,'Recovered','darkgreen')).encode(
                alt.Stroke(
                'clm:N',scale=alt.Scale(domainMid=1,domain=['Infected','Suspect','Recoverd'],
                                range=['darkred','darkblue','darkgreen'] ))))
コード例 #3
0
def test_convert_stroke_fail_temporal(column):
    chart = alt.Chart(df).mark_point().encode(alt.Stroke(column))
    convert(chart)
コード例 #4
0
def app():
    # Load 6,000 rows of data into the dataframe.
    bData = load_data(bFile)
    rRawData = load_data(rFile, rDateCol, 6000)

    # add col to bData for int version of ratings
    bData['starsInt'] = [int(i) for i in bData['stars']]

    # parse rData to add year column
    rRawData['year'] = pd.DatetimeIndex(rRawData['date'], tz='UTC').year
    rData = copy.copy(rRawData)
    rData = rData.drop(columns=['date'])
    # st.subheader('Dropped date col')
    # st.write(rData.head())

    yearSet = set(rData['year'])

    bSmallData = bData.head()
    rSmallData = rData.head()
    #uSmallData = uData.head()

    ################################################################################
    # Titles and Information
    ################################################################################
    st.title('Explore City-Wide Restaurant Reviews')
    st.subheader(
        'Check out the ratings of restaurants in Pittsburgh and other major cities, their reviews, and their sentiment over time.'
    )

    ################################################################################
    # Maps
    ################################################################################
    # MAP VISUALIZATION
    # break apart data into city specific data
    pittsburghData = bData.loc[bData['city'] == 'Pittsburgh']
    montrealData = bData.loc[bData['city'] == 'Montréal']
    clevelandData = bData.loc[bData['city'] == 'Cleveland']
    torontoData = bData.loc[bData['city'] == 'Toronto']

    st.header('City Restaurant Data')

    # slider and data from user input
    #st.map(bData)
    selectedStars = st.sidebar.slider('Filter maps by selecting ratings:', 0,
                                      5, (0, 5))
    filteredDataP = pittsburghData[
        (pittsburghData['starsInt'] >= selectedStars[0])
        & (pittsburghData['starsInt'] <= selectedStars[1])]
    filteredDataM = montrealData[
        (montrealData['starsInt'] >= selectedStars[0])
        & (montrealData['starsInt'] <= selectedStars[1])]
    filteredDataC = clevelandData[
        (clevelandData['starsInt'] >= selectedStars[0])
        & (clevelandData['starsInt'] <= selectedStars[1])]
    filteredDataT = torontoData[(torontoData['starsInt'] >= selectedStars[0]) &
                                (torontoData['starsInt'] <= selectedStars[1])]

    # PREFERENCE OF FILTERED DATA
    # initiate bar chart below maps
    starsBarP = barChart = alt.Chart(
        pittsburghData,
        title='Pittsburgh Restaurant Rating').mark_bar().encode(
            alt.X('count():Q', title='Number of reviews'),
            alt.Y('starsInt:N', title='Stars Rated'),
            alt.Color('starsInt:Q', legend=None))

    starsBarM = barChart = alt.Chart(
        montrealData, title='Montreal Restaurant Rating').mark_bar().encode(
            alt.X('count():Q', title='Number of reviews'),
            alt.Y('starsInt:N', title='Stars Rated'),
            alt.Color('starsInt:Q', legend=None))

    starsBarC = barChart = alt.Chart(
        clevelandData, title='Cleveland Restaurant Rating').mark_bar().encode(
            alt.X('count():Q', title='Number of reviews'),
            alt.Y('starsInt:N', title='Stars Rated'),
            alt.Color('starsInt:Q', legend=None))

    starsBarT = barChart = alt.Chart(
        torontoData, title='Toronto Restaurant Rating').mark_bar().encode(
            alt.X('count():Q', title='Number of reviews'),
            alt.Y('starsInt:N', title='Stars Rated'),
            alt.Color('starsInt:Q', legend=None))

    #CONFIGURE LAYOUT
    # first 2 maps
    col1, col2 = st.beta_columns(2)

    col1.subheader('Pittsburgh')
    col1.map(filteredDataP)
    col1.write(starsBarP)

    col2.subheader('Montreal')
    col2.map(filteredDataM)
    col2.write(starsBarM)

    # second 2 maps
    col3, col4 = st.beta_columns(2)

    col3.subheader('Cleveland')
    col3.map(filteredDataC)
    col3.write(starsBarC)

    col4.subheader('Toronto')
    col4.map(filteredDataT)
    col4.write(starsBarT)

    ################################################################################
    # Exploratory Visuals
    ################################################################################
    # PREFERENCE OVER TIME
    rDataFiltered = copy.copy(rData)
    cola, colb, colc = st.beta_columns(3)

    pref = 'neu'
    prefTitle = 'Neutral '
    st.subheader('View colorized sentiment overtime.')
    st.write('Select review type to filter preference overtime')

    if cola.button('Negative Reviews'):
        #rDataFiltered = rDataFiltered[rDataFiltered['neg']]
        pref = 'neg'
        prefTitle = 'Negative '
    if colb.button('Positive Reviews'):
        #rDataFiltered = rDataFiltered[rDataFiltered['pos']]
        pref = 'pos'
        prefTitle = 'Positive '
    if colc.button('Neutral Reviews'):
        #rDataFiltered = rDataFiltered[rDataFiltered['neu']]
        pref = 'neu'
        prefTitle = 'Neutral '

    st.write('Preference Over Time:')
    preference = alt.Chart(
        rDataFiltered,
        title='Preference Over Time').mark_circle(strokeWidth=2).encode(
            alt.X('year:N', title='Date', axis=alt.Axis(labelAngle=0)),
            alt.Y('bcity:N', title='City'),
            alt.Size('count():Q',
                     scale=alt.Scale(range=[0, 4000]),
                     legend=alt.Legend(title='Number of Reviews')),
            #alt.Opacity(pref, type = 'quantitative', aggregate = 'mean'),
            alt.Stroke('bcity:N', legend=None),
            alt.Color(pref, type='quantitative', aggregate='mean'),
            alt.Tooltip('neg:Q', aggregate='mean')).properties(height=440,
                                                               width=800)

    # map total average pref reviews over time
    totalPreference = alt.Chart(
        rDataFiltered, title=prefTitle + 'Over Time').mark_area(
            opacity=0.8, color='black').encode(
                alt.X('year:O', axis=alt.Axis(labelAngle=0), title='Year'),
                alt.Y(pref,
                      type='quantitative',
                      title=prefTitle + 'Sentiment Average')).properties(
                          height=150, width=800)

    st.write(preference & totalPreference)
コード例 #5
0
def test_quantitative_stroke():
    chart = alt.Chart(df_quant).mark_point().encode(alt.Stroke('fill'))
    convert(chart)
コード例 #6
0
 def test_line_stroke(self, x, y, s):
     chart = alt.Chart(df_line).mark_line().encode(alt.X(x), alt.Y(y),
                                                   alt.Stroke(s))
     fig, _ = convert(chart)
     return fig
コード例 #7
0
ファイル: plot_utils.py プロジェクト: jpcosec/Memoria
def noise_plot(source=data['students']['kd']['noise'],
               title="Diferencia con ResNet101 contra ruido",
               y='delta_teacher',
               x='noise',
               color='feat_dist',
               shape='layer',
               student='ResNet18',
               xscale='linear',
               yscale='linear'):

    d = locals()
    ks = [
        i for i in d.keys()
        if i not in ['source', 'title', 'xscale', 'yscale', 'scale', 'bs']
    ]
    vals = [d[i] for i in ks]
    source = source.drop(columns=[
        i for i in source.columns if i not in vals + ['student', 'noise']
    ])

    sou = source[source['student'] == student]

    #reduce data

    selection = alt.selection_multi(fields=[color], bind='legend')

    ytitle = global_titles[
        y] if yscale == 'linear' else global_titles[y] + " [%s]" % yscale
    xtitle = global_titles[
        x] if xscale == 'linear' else global_titles[x] + " [%s]" % xscale

    base = alt.Chart(sou, title=title).mark_line().encode(
        alt.Y(y,
              type='quantitative',
              title=ytitle,
              scale=alt.Scale(zero=False, base=10, type=yscale)),
        alt.X('noise:Q',
              type='quantitative',
              scale=alt.Scale(zero=False, base=10, type=xscale),
              title=xtitle),
        color=alt.Color('%s:N' % color,
                        legend=alt.Legend(title=global_titles[color]),
                        scale=alt.Scale(scheme='spectral')),
        strokeDash=alt.Stroke('%s:N' % shape,
                              legend=alt.Legend(title=global_titles[shape])),
        opacity=alt.condition(
            selection, alt.value(1),
            alt.value(0.2))).add_selection(selection).properties(width=600,
                                                                 height=600)

    line = alt.Chart(sou).mark_line().encode(
        x=x,
        #y='mean(%s)'%y,
        y=alt.Y('mean(%s)' % y,
                type='quantitative',
                title=ytitle,
                scale=alt.Scale(zero=False, base=10, type=yscale)),
        color=alt.Color('%s:N' % color,
                        legend=alt.Legend(title=global_titles[color]),
                        scale=alt.Scale(scheme='spectral')),
        opacity=alt.condition(selection, alt.value(1), alt.value(0.2)),
        shape=alt.Shape('%s:N' % color, legend=alt.Legend(title='media')),
        #opacity=alt.value(0.5)
    )

    point = alt.Chart(sou).mark_point(filled=True).encode(
        x=x,
        #y='mean(%s)'%y,
        y=alt.Y('mean(%s)' % y,
                type='quantitative',
                title=ytitle,
                scale=alt.Scale(zero=False, base=10, type=yscale)),
        color=alt.Color('%s:N' % color,
                        legend=alt.Legend(title=global_titles[color]),
                        scale=alt.Scale(scheme='spectral')),
        opacity=alt.condition(selection, alt.value(1), alt.value(0.2)),
        shape=alt.Shape('%s:N' % color, legend=alt.Legend(title='media')),
        #opacity=alt.value(0.5)
    )

    band = alt.Chart(sou).mark_errorband(extent='ci').encode(
        x=alt.X('noise', title=xtitle),
        y=alt.Y('%s' % y, title=global_titles[y]),
        color=alt.Color('%s:N' % color,
                        legend=alt.Legend(title=global_titles[color]),
                        scale=alt.Scale(scheme='spectral')),
        opacity=alt.condition(selection, alt.value(0.4), alt.value(0.05)))

    w = base + band + line + point
    w.properties(width=600, height=600)
    return w
コード例 #8
0
ファイル: plot_utils.py プロジェクト: jpcosec/Memoria
def grafico_con_barra_y_CE(
        source=data['students']['kd']['KD'],
        title="Diferencia de accuracy en entrenamiento con respecto a Resnet101.",
        y="delta_teacher",
        x="feat_dist",
        fill='layer',
        color='student',
        shape='layer',
        bs=True,
        scale='linear'):

    if x == 'dists':
        source = source.copy()
        source['dists'] = source['feat_dist'] + ", " + source['log_dist']
    elif x == 'feat,block':
        source = source.copy()
        source['feat,block'] = [
            i + ", " + str(j)
            for i, j in list(zip(source['feat_dist'], source['layer']))
        ]

    #reduce data
    d = locals()
    ks = [
        i for i in d.keys()
        if i not in ['source', 'title', 'xscale', 'yscale', 'scale', 'bs']
    ]
    vals = [d[i] for i in ks]
    source = source.drop(columns=[i for i in source.columns if i not in vals])

    chart = alt.Chart(source, title=title).mark_point(size=100).encode(
        y=alt.Y(
            y,
            type='quantitative',
            scale=alt.Scale(zero=True, base=2, constant=1, type=scale),
            title=global_titles[y] if scale == 'linear' else global_titles[y] +
            " [%s]" % scale),
        x=alt.X(x, title=global_titles[x]),
        color=alt.Color(color, legend=alt.Legend(title=global_titles[color])),
        fill=alt.Fill('%s:O' % fill,
                      legend=alt.Legend(title=global_titles[fill]),
                      scale=alt.Scale(scheme='pastel1')),
        shape=alt.Shape("%s:O" % shape,
                        legend=alt.Legend(title=global_titles[shape])),
        opacity=alt.value(0.5))

    bar = alt.Chart(bar_source).mark_rule(opacity=0.5).encode(
        y=y,
        color=alt.Color('model', legend=alt.Legend(title="Modelo")),
        stroke=alt.Stroke('model',
                          legend=alt.Legend(title="Modelo en Cross Entropy")),
        size=alt.value(2))

    if bs:
        bar = alt.Chart(bar_source).mark_rule(opacity=0.5).encode(
            y=y,
            color=alt.Color('model', legend=alt.Legend(title="Modelo")),
            stroke=alt.Stroke(
                'model', legend=alt.Legend(title="Modelo en Cross Entropy")),
            size=alt.value(2))
        d = bar + chart
        d.properties(width=600, height=600).configure_axis(
            titleFontSize=12).configure_title(fontSize=15)

        return d

    chart.properties(width=600, height=600).configure_axis(
        titleFontSize=12).configure_title(fontSize=15)
    return chart
コード例 #9
0
ファイル: plot_utils.py プロジェクト: jpcosec/Memoria
def grafico_con_barra_xy_CE(
        source=data['students']['kd']['KD'],
        title="Ratio entre exactitud en validacion y accuracy en entrenamiento.",
        y="test/train",
        x="temp",
        color='student',
        shape='log_dist',
        bs=True,
        fill=None,
        xscale='log',
        yscale='linear'):

    #reduce data
    d = locals()
    ks = [
        i for i in d.keys()
        if i not in ['source', 'title', 'xscale', 'yscale', 'scale', 'bs']
    ]
    vals = [d[i] for i in ks]
    source = source.drop(columns=[i for i in source.columns if i not in vals])

    ytitle = global_titles[
        y] if yscale == 'linear' else global_titles[y] + " [%s]" % yscale
    xtitle = global_titles[
        x] if xscale == 'linear' else global_titles[x] + " [%s]" % xscale
    encodings = {
        'y':
        alt.Y(y,
              type='quantitative',
              title=ytitle,
              scale=alt.Scale(zero=False, base=10, type=yscale)),
        'x':
        alt.X(x,
              type='quantitative',
              title=xtitle,
              scale=alt.Scale(zero=False, base=10, type=xscale)),
        'color':
        alt.Color(color, legend=alt.Legend(title=global_titles[color])),
        'shape':
        alt.Shape(shape, legend=alt.Legend(title=global_titles[shape])),
        #size=50
    }

    if fill is not None:
        encodings["fill"] = alt.Fill(fill)

    chart = alt.Chart(
        source,
        title=title).mark_point(size=100).encode(**encodings).interactive()
    if bs:
        bar = alt.Chart(bar_source).mark_rule(opacity=0.5).encode(
            y=y,
            color=alt.Color('model', legend=alt.Legend(title="Modelo")),
            stroke=alt.Stroke(
                'model', legend=alt.Legend(title="Modelo en Cross Entropy")),
            size=alt.value(2))
        d = bar + chart
        d.properties(width=600, height=600).configure_axis(
            titleFontSize=12).configure_title(fontSize=15)

        return d
    chart.properties(width=600, height=600).configure_axis(
        titleFontSize=12).configure_title(fontSize=15)
    return chart
コード例 #10
0
if colc.button('Neutral Reviews'):
    #rDataFiltered = rDataFiltered[rDataFiltered['neu']]
    pref = 'neu'
    prefTitle = 'Neutral '

st.write('Preference Over Time:')
methods2 = alt.Chart(
    rDataFiltered,
    title='Preference Over Time').mark_circle(strokeWidth=2).encode(
        alt.X('year:N', title='Date', axis=alt.Axis(labelAngle=0)),
        alt.Y('bcity:N', title='City'),
        alt.Size('count():Q',
                 scale=alt.Scale(range=[0, 4000]),
                 legend=alt.Legend(title='Number of Reviews')),
        #alt.Opacity(pref, type = 'quantitative', aggregate = 'mean'),
        alt.Stroke('bcity:N', legend=None),
        alt.Color(pref, type='quantitative', aggregate='mean'),
        alt.Tooltip('neg:Q', aggregate='mean')).properties(height=440,
                                                           width=800)
#st.write(methods2)

# map total average pref reviews over time
total = alt.Chart(rDataFiltered, title=prefTitle + 'Over Time').mark_area(
    opacity=0.8, color='black').encode(
        alt.X('year:O', axis=alt.Axis(labelAngle=0), title='Year'),
        alt.Y(pref,
              type='quantitative',
              title=prefTitle + 'Average Preference')).properties(height=150,
                                                                  width=800)

st.write(methods2 & total)