コード例 #1
0
def metrics(M, metrics_labels, types, filename='metrics.html'):
    rows = [(metrics_labels[i], types[j], types[k], m)
            for (i, j, k), m in np.ndenumerate(M)]
    columns = ['m', 't1', 't2', 'v']
    df = pd.DataFrame.from_records(rows, columns=columns)
    rating_radio = alt.binding_radio(options=metrics_labels)
    rating_select = alt.selection_single(fields=['m'],
                                         bind=rating_radio,
                                         name="Metric",
                                         empty='none',
                                         init={'m': metrics_labels[0]})
    heatmap = alt.Chart(df).encode(
        alt.X('t2:N'),
        alt.Y('t1:N'),
    ).mark_rect().encode(color='v:Q')
    text = alt.Chart(df).encode(
        alt.X('t2:N'),
        alt.Y('t1:N'),
    ).mark_text(baseline='middle').encode(
        text=alt.Text('v:Q', format='.3f'),
        color=alt.value('black'),
        # color=alt.condition(
        #     alt.datum.v < 0.8,
        #     alt.value('black'),
        #     alt.value('white')
        # )
    )
    p = (heatmap + text).add_selection(rating_select).transform_filter(
        rating_select).properties(width=400, height=400)
    p.save(filename)
    return p
コード例 #2
0
def plot_tsne(source, x_col, y_col, category, perplexities, img_name):

    cats = list(source[category].unique())

    # Base
    base = alt.Chart(source).mark_point(filled=True).encode(x=x_col + ':Q',
                                                            y=y_col + ':Q',
                                                            tooltip=img_name +
                                                            ':N')

    # A slider filter
    perp_slider = alt.binding_range(min=10, max=40, step=10)
    slider_selection = alt.selection_single(bind=perp_slider,
                                            fields=[perplexities],
                                            name="Change")

    # Color changing marks
    rating_radio = alt.binding_radio(options=cats)
    rating_select = alt.selection_single(fields=[category],
                                         bind=rating_radio,
                                         name="Filter")
    rating_color_condition = alt.condition(
        rating_select, alt.Color(category + ':N', legend=None),
        alt.value('lightgray'))

    highlight_ratings = base.add_selection(
        rating_select, slider_selection).encode(
            color=rating_color_condition).transform_filter(
                slider_selection).properties(title="tSNE Scatter Plot")

    return highlight_ratings.properties(width=800, height=300)
コード例 #3
0
def plot_normalization_comparison():
    normalized = pd.read_csv(
        'https://raw.githubusercontent.com/jamescoller/multilayer_design_network_tool/master/results/id_normalized.csv',
        names=['NodeID', 'id'])
    not_normal = pd.read_csv(
        'https://raw.githubusercontent.com/jamescoller/multilayer_design_network_tool/master/results/id_not_normalized.csv',
        names=['NodeID', 'id'])

    # normalization = pd.DataFrame()
    # normalization['NodeID'] = normalized['NodeID']
    # normalization['normal'] = normalized['id']
    # normalization['not_normal'] = not_normal['id']

    # normalization

    normalized['normal'] = 1
    not_normal['normal'] = 0

    norm2 = pd.concat([normalized, not_normal])

    radial_input = alt.binding_radio(options=[1, 0])
    norm_choice = alt.selection_single(fields=['normal'],
                                       bind=radial_input,
                                       name='Normalized?')

    norm_comparison = alt.Chart(norm2).mark_bar().encode(
        x=alt.X('id:Q',
                bin=alt.Bin(maxbins=20),
                title='Interdependency Rating'),
        y=alt.Y('count()', title='Number of Nodes')).add_selection(
            norm_choice).transform_filter(norm_choice).transform_filter(
                alt.datum.NodeID != 64)

    norm_comparison.serve()
def other_viz3(result):
    #result = load5()
    types = [
        'Action Fires/Supressed Fires', 'Natural Out',
        'Support Action/Assist Fire', 'Fire Management/Perscribed',
        'False Alarm', 'Severe'
    ]

    firetype_df2 = result.groupby(['YEAR_', 'FIRETYPE'
                                   ]).size().reset_index(name="Firetype Count")
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(
        0, 'Action Fires/Supressed Fires')
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(
        1, 'Natural Out')
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(
        2, 'Support Action/Assist Fire')
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(
        3, 'Fire Management/Perscribed')
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(
        4, 'False Alarm')
    firetype_df2['FIRETYPE'] = firetype_df2['FIRETYPE'].replace(5, 'Severe')

    base = alt.Chart(firetype_df2, width=600,
                     height=400).mark_point(filled=True).encode(
                         x=alt.X('YEAR_:N',
                                 axis=alt.Axis(labelAngle=360,
                                               values=[
                                                   1980, 1985, 1990, 1995,
                                                   2000, 2005, 2010, 2016
                                               ]),
                                 title='Year'),
                         y='Firetype Count:Q',
                         tooltip=["FIRETYPE:N", 'YEAR_:N'])

    type_radio = alt.binding_radio(options=types)
    type_select = alt.selection_single(fields=['FIRETYPE'],
                                       bind=type_radio,
                                       name='Pick a')
    type_color_condition = alt.condition(type_select, alt.Color('FIRETYPE:N'),
                                         alt.value('lightgray'))
    highlight_types = base.add_selection(type_select).encode(
        color=type_color_condition).properties(
            title="U.S. Number of Fires (1980-2016)")

    highlight_types
コード例 #5
0
ファイル: 1.py プロジェクト: biolchen/biologistLearningPython
                                        name="Release Year_")

filter_year = base.add_selection(slider_selection).transform_filter(
    slider_selection).properties(title="Slider Filtering")

# A dropdown filter
genre_dropdown = alt.binding_select(options=genres)
genre_select = alt.selection_single(fields=['Major_Genre'],
                                    bind=genre_dropdown,
                                    name="Genre")

filter_genres = base.add_selection(genre_select).transform_filter(
    genre_select).properties(title="Dropdown Filtering")

#color changing marks
rating_radio = alt.binding_radio(options=ratings)

rating_select = alt.selection_single(fields=['MPAA_Rating'],
                                     bind=rating_radio,
                                     name="Rating")
rating_color_condition = alt.condition(rating_select,
                                       alt.Color('MPAA_Rating:N', legend=None),
                                       alt.value('lightgray'))

highlight_ratings = base.add_selection(rating_select).encode(
    color=rating_color_condition).properties(title="Radio Button Highlighting")

# Boolean selection for format changes
input_checkbox = alt.binding_checkbox()
checkbox_selection = alt.selection_single(bind=input_checkbox,
                                          name="Big Budget Films")
コード例 #6
0
def chart_altair(df, system_ini='peninsular'):
    '''
    Create an altair chart with the average of last 7 days of electric generation of total enery, renewable energy, solar
    photovoltaic energy and wind powered energy by date, the chart can be filtered by year and electric system.
    also add a vertical line to show the values where put the mouse in the chart.

    :param df: Pandas Dataframe with de average of last 7 days of electric generation by electric system, date, year and technology
    :param system_ini: Initial system to show in the chart, by default 'peninsular
    :return: altair layered chart
    '''

    # labels of X axis to show in the chart, every first day of month from 2016-01 to 2021-12.
    x_labels = [
        '2016-01-01', '2016-02-01', '2016-03-01', '2016-04-01', '2016-05-01',
        '2016-06-01', '2016-07-01', '2016-08-01', '2016-09-01', '2016-10-01',
        '2016-11-01', '2016-12-01', '2016-12-31', '2017-01-01', '2017-02-01',
        '2017-03-01', '2017-04-01', '2017-05-01', '2017-06-01', '2017-07-01',
        '2017-08-01', '2017-09-01', '2017-10-01', '2017-11-01', '2017-12-01',
        '2017-12-31', '2018-01-01', '2018-02-01', '2018-03-01', '2018-04-01',
        '2018-05-01', '2018-06-01', '2018-07-01', '2018-08-01', '2018-09-01',
        '2018-10-01', '2018-11-01', '2018-12-01', '2018-12-31', '2019-01-01',
        '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-01',
        '2019-07-01', '2019-08-01', '2019-09-01', '2019-10-01', '2019-11-01',
        '2019-12-01', '2019-12-31', '2020-01-01', '2020-02-01', '2020-03-01',
        '2020-04-01', '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-01',
        '2020-09-01', '2020-10-01', '2020-11-01', '2020-12-01', '2020-12-31',
        '2021-01-01', '2021-02-01', '2021-03-01', '2021-04-01', '2021-05-01',
        '2021-06-01', '2021-07-01', '2021-08-01', '2021-09-01', '2021-10-01',
        '2021-11-01', '2021-12-01', '2021-12-31'
    ]

    # list of elements in Color to be plotted
    domain = ['Generación total', 'Renovable', 'Solar fotovoltaica', 'Eólica']
    # colors in hexadecimal, for each element in domain list
    range_ = ['#85C1E9', '#239B56', '#D35400', '#F7DC6F']

    # set a select box to select the system to show in the chart
    select_box_sys = alt.binding_select(options=list(df['system'].unique()))

    selection_sys = alt.selection_single(name='REE',
                                         fields=['system'],
                                         bind=select_box_sys,
                                         init={'system': system_ini})

    # set a radio selector to select the year to show in the chart
    select_radio_year = alt.binding_radio(options=list(df['year'].unique()))

    selection_year = alt.selection_single(name='Choose',
                                          fields=['year'],
                                          bind=select_radio_year,
                                          init={'year': max(df['year'])})

    # create a markpoint with variable fecha as X axis
    # with a selection that works over the variable fecha showing the nearest value where the mouse is over.
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['fecha'],
                            empty='none')

    selectors = alt.Chart(df).mark_point().encode(
        alt.X('fecha'),
        opacity=alt.value(0)).add_selection(nearest).transform_filter(
            selection_sys).transform_filter(selection_year)

    # Create the main chart, with the electric generation by date, and add the selectors of year and systems
    bar = alt.Chart(df[df['Renov_norenov'] == 'Generación total']).mark_area(
        color='#85C1E9').encode(
            alt.X('fecha', axis=alt.Axis(values=x_labels, labelAngle=0)),
            alt.Y('Generacion_Mwh:Q')).add_selection(
                selection_sys, selection_year).transform_filter(
                    selection_sys).transform_filter(selection_year).properties(
                        width=1400, height=450)

    # Create the chart of renewable energy by fecha, also add the color with the list domain and his colors in list range_
    # also add the transformers of the main chart
    bar_renov = alt.Chart(
        df[df['Tecnologia'] == 'Renovable']).mark_area().encode(
            alt.X('fecha'),
            alt.Y('Generacion_Mwh:Q'),
            color=alt.Color('Tecnologia',
                            scale=alt.Scale(domain=domain, range=range_))
        ).transform_filter(selection_sys).transform_filter(selection_year)

    # add a text chart to show the value of the bar_renov chart
    text_renov = bar_renov.mark_text(
        align='left', dx=3, dy=-20, color='#212F3C').encode(
            text=alt.condition(nearest, 'Generacion_Mwh', alt.value(' ')))

    rules = alt.Chart(df).mark_rule(color='gray').encode(
        x='fecha', ).transform_filter(nearest)

    # Create the chart of Solar photovoltaic by fecha, also add the transformers of the main chart
    bar_solar = alt.Chart(
        df[df['Tecnologia'] == 'Solar fotovoltaica']).mark_area(
            opacity=.8, color='#D35400').encode(
                alt.X('fecha'), alt.Y('Generacion_Mwh:Q')).transform_filter(
                    selection_sys).transform_filter(selection_year)

    # add a text chart to show the value of the bar_renov chart
    text_solar = bar_solar.mark_text(
        align='left', dx=5, dy=-5, color='#212F3C').encode(
            text=alt.condition(nearest, 'Generacion_Mwh', alt.value(' ')))

    # Create the chart of wind power by fecha, also add the transformers of the main chart
    bar_eolica = alt.Chart(
        df[df['Tecnologia'] == 'Eólica']).mark_area(color='#F7DC6F').encode(
            alt.X('fecha'), alt.Y('Generacion_Mwh:Q')).transform_filter(
                selection_sys).transform_filter(selection_year)

    # add a text chart to show the value of the bar_renov chart
    text_eolica = bar_eolica.mark_text(
        align='left', dx=5, dy=-5, color='#212F3C').encode(
            text=alt.condition(nearest, 'Generacion_Mwh', alt.value(' ')))

    # retrun a altair layered chart with all the elements created in the function
    return alt.layer(
        bar, bar_renov, bar_eolica, bar_solar, selectors, rules, text_renov,
        text_eolica, text_solar).configure_axis(
            labelFontSize=13, titleFontSize=14).configure_text(
                fill='#212F3C',
                fontSize=13).configure_legend(labelFontSize=14).interactive()
コード例 #7
0
                st.write(base_peak)

            if 1 == 1:
                base = alt.Chart(data).mark_circle(size=60).encode(
                    x=alt.X('phi', type='ordinal'),
                    y=alt.Y(option_FOM,
                            type='quantitative',
                            scale=alt.Scale(type='log')),
                    facet=alt.Facet('bf_id_s:N',
                                    columns=len(unq_bf),
                                    spacing=-.5),
                    color='np_id_s:N',
                    size='a_33:O',
                ).properties(width=180).interactive()

                p_radio = alt.binding_radio(options=unq_p.tolist())
                p_select = alt.selection_single(fields=['p'],
                                                bind=p_radio,
                                                name="Aspect ratio, p")
                p_color_condition = alt.condition(
                    p_select, alt.Color('p:N', legend=None),
                    alt.value('lightgray'))

                np_dropdown = alt.binding_select(options=unq_np.tolist())
                np_select = alt.selection_single(fields=['np_id_s'],
                                                 bind=np_dropdown,
                                                 name="Nanoparticle")

                radio_p = base.add_selection(p_select).encode(
                    color=p_color_condition, ).add_selection(
                        np_select).transform_filter(np_select).properties(
コード例 #8
0
def make_figure(ranks_pd: pd.DataFrame, o_ranks_explored: str,
                p_pair_number: int, p_color_palette: str, omic1_column: str,
                omic2_column: str, omic1: str, omic2: str, p_omic1_filt: str,
                p_omic1_value: str, p_omic2_filt: str, p_omic2_value: str,
                p_omic1_max: int, p_omic2_max: int, p_color_top: str) -> None:

    conditionals_1 = 'conditionals_per_%s' % omic1
    conditionals_2 = 'conditionals_per_%s' % omic2

    if p_omic1_max:
        ranks_pd = ranks_pd.loc[ranks_pd[conditionals_1] <= p_omic1_max, :]
    if p_omic2_max:
        ranks_pd = ranks_pd.loc[ranks_pd[conditionals_2] <= p_omic2_max, :]

    ranks_pd2merge = ranks_pd[[omic1, omic2, conditionals_1, conditionals_2]]
    ranks_st = get_stacked(ranks_pd, omic1_column, omic2_column, omic1, omic2)
    ranks_st = ranks_st.merge(ranks_pd2merge, on=[omic1, omic2], how='left')

    text = [
        "\n\nCo-occurrence matrix exploration tool (mmvec)",
        "%s (%s features) vs. %s (%s features)" %
        (omic1, ranks_st[omic1].unique().size, omic2,
         ranks_st[omic2].unique().size)
    ]
    subtext = []
    if p_omic1_filt and p_omic1_value:
        subtext.append("Subset %s for '%s' in '%s'" %
                       (omic1, ', '.join(list(p_omic1_value)), p_omic1_filt))
    if p_omic2_filt and p_omic2_value:
        subtext.append("Subset %s for '%s' in '%s'" %
                       (omic2, ', '.join(list(p_omic1_value)), p_omic2_filt))

    conditionals = [
        'conditionals', 'ranked_conditionals', conditionals_1, conditionals_2
    ]
    conditionals_radio = alt.binding_radio(options=conditionals,
                                           name="Co-occurrence measure")
    conditionals_select = alt.selection_single(
        fields=['conditional'],
        bind=conditionals_radio,
        init={'conditional': 'conditionals'})

    max_rank1 = int(ranks_st[conditionals_1].max())
    init1 = p_pair_number
    if p_pair_number > max_rank1:
        init1 = max_rank1
    slider1 = alt.binding_range(min=1,
                                max=max_rank1,
                                step=1,
                                name='Maximum number of %s for each %s:' %
                                (omic2, omic1))
    selector1 = alt.selection_single(name="cutoff1",
                                     fields=['cutoff1'],
                                     bind=slider1,
                                     init={'cutoff1': init1})

    max_rank2 = int(ranks_st[conditionals_2].max())
    init2 = p_pair_number
    if p_pair_number > max_rank2:
        init2 = max_rank2
    slider2 = alt.binding_range(min=1,
                                max=max_rank2,
                                step=1,
                                name='Maximum number of %s for each %s:' %
                                (omic1, omic2))
    selector2 = alt.selection_single(name="cutoff2",
                                     fields=['cutoff2'],
                                     bind=slider2,
                                     init={'cutoff2': init2})

    mlt1 = alt.selection_multi(fields=[omic1], toggle=True)
    mlt2 = alt.selection_multi(fields=[omic2], toggle=True)

    slider_label1 = alt.binding_range(min=0,
                                      max=max_rank1,
                                      step=1,
                                      name='Label this much top %s per %s:' %
                                      (omic2, omic1))
    label1 = alt.selection_single(name="cutoff_label1",
                                  fields=['cutoff_label1'],
                                  bind=slider_label1,
                                  init={'cutoff_label1': 0})
    slider_label2 = alt.binding_range(min=0,
                                      max=max_rank2,
                                      step=1,
                                      name='Label this much top %s per %s:' %
                                      (omic1, omic2))
    label2 = alt.selection_single(name="cutoff_label2",
                                  fields=['cutoff_label2'],
                                  bind=slider_label2,
                                  init={'cutoff_label2': 0})

    sorted_omic1 = get_sorted(ranks_st, omic1_column, omic1)
    sorted_omic2 = get_sorted(ranks_st, omic2_column, omic2)

    tooltips = [
        omic1, omic2, 'conditional', 'rank', conditionals_1, conditionals_2
    ]

    if omic1_column:
        tooltips.append(omic1_column)
    if omic2_column:
        tooltips.append(omic2_column)

    x_size = len(sorted_omic1) * 6
    y_size = len(sorted_omic2) * 6
    rect = alt.Chart(ranks_st).mark_rect().encode(
        x=alt.X('%s:O' % omic1,
                sort=sorted_omic1,
                axis=alt.Axis(labelOverlap=False,
                              labelFontSize=6,
                              labelLimit=500,
                              orient='top',
                              labelAngle=45,
                              titleFontSize=0)),
        y=alt.Y('%s:O' % omic2,
                sort=sorted_omic2,
                axis=alt.Axis(labelOverlap=False,
                              labelFontSize=6,
                              titleFontSize=0,
                              labelLimit=500)),
        color=alt.Color('rank:Q',
                        legend=alt.Legend(orient='left'),
                        sort="descending",
                        scale=alt.Scale(scheme=p_color_palette)),
        tooltip=tooltips).add_selection(
            conditionals_select, mlt1, mlt2, selector1,
            selector2).transform_filter(conditionals_select).transform_filter(
                mlt1).transform_filter(mlt2).transform_filter(
                    alt.datum[conditionals_1] <= selector1.cutoff1
                ).transform_filter(
                    alt.datum[conditionals_2] <= selector2.cutoff2).properties(
                        width=x_size,
                        height=y_size,
                    )

    circ = alt.Chart(ranks_st).mark_point(size=5, shape='diamond').encode(
        x=alt.X('%s:O' % omic1,
                sort=sorted_omic1,
                axis=alt.Axis(labelOverlap=False,
                              labelFontSize=6,
                              orient='top',
                              labelAngle=45,
                              titleFontSize=0)),
        y=alt.Y('%s:O' % omic2,
                sort=sorted_omic2,
                axis=alt.Axis(labelOverlap=False,
                              labelFontSize=6,
                              titleFontSize=0)),
        color=alt.ColorValue(p_color_top),
        tooltip=tooltips).add_selection(label1, label2).transform_filter(
            conditionals_select
        ).transform_filter(mlt1).transform_filter(mlt2).transform_filter(
            alt.datum[conditionals_1] <= selector1.cutoff1).transform_filter(
                alt.datum[conditionals_2] <= selector2.cutoff2
            ).transform_filter(
                alt.datum[conditionals_1] <= label1.cutoff_label1
            ).transform_filter(
                alt.datum[conditionals_2] <= label2.cutoff_label2).properties(
                    width=x_size, height=y_size)

    bar_omic1 = get_bar_chart(ranks_st, sorted_omic1, conditionals_1,
                              conditionals_2, omic1_column, omic1, omic1,
                              omic2, x_size, y_size, mlt1, selector1,
                              selector2)
    bar_omic2 = get_bar_chart(ranks_st, sorted_omic2, conditionals_1,
                              conditionals_2, omic2_column, omic2, omic1,
                              omic2, x_size, y_size, mlt2, selector1,
                              selector2)

    chart = alt.vconcat(alt.hconcat((rect + circ), bar_omic2), bar_omic1)

    chart.resolve_legend(
        color="independent", size="independent").configure_axis(
            labelLimit=300,
            labelFontSize=8,
        ).configure_legend(labelLimit=1000,
                           labelFontSize=8,
                           titleFontSize=8,
                           symbolSize=12,
                           columns=3).properties(
                               title={
                                   "text": text,
                                   "subtitle": (subtext +
                                                ["(based on altair)"]),
                                   "color": "black",
                                   "subtitleColor": "grey"
                               })

    if not isdir(dirname(o_ranks_explored)):
        os.makedirs(dirname(o_ranks_explored))
    chart.save(o_ranks_explored)
    print('-> Written:', o_ranks_explored)