landmarks.append(landmark) _prx_t = time.time() - _start_t if len(bboxes): for i, landmark in enumerate(landmarks): for j, point in enumerate(landmark): cv.circle(image, tuple(point), 3, (0, 255, 0), -1) image = vis.plotBBoxes(image, bboxes, len(bboxes) * ['face'], scores) image = vis.plotInfo(image, 'Raspberry Pi - FPS: {:.3f}'.format(1/_prx_t)) image = cv.cvtColor(np.asarray(image), cv.COLOR_BGR2RGB) cv.imshow(image_path, image) key = cv.waitKey(0) cv.destroyAllWindows() def main(args): app(args.image) if __name__ == '__main__': LOG.info('Raspberry Pi: Face Detection\n') args = helper.getArgs() main(args) LOG.info('Process done')
if record: writer.write(frm) if show: cv.imshow(video_name, frm) key = cv.waitKey(1) if key in [27, ord('q')]: LOG.info('Interrupted by Users') break if record: writer.release() cap.release() cv.destroyAllWindows() def main(args): video_link = args.video if args.video else 0 app(video_link, args.name, args.show, args.record, args.flip_hor, args.flip_ver) if __name__ == '__main__': LOG.info('Raspberry Pi: Object Detection') args = helper.getArgs() main(args) LOG.info('Process done')
frm = cv.cvtColor(np.asarray(frm), cv.COLOR_BGR2RGB) if record: writer.write(frm) if show: cv.imshow(video_name, frm) key = cv.waitKey(1) if key in [27, ord('q')]: LOG.info('Interrupted by Users') break if record: writer.release() cap.release() cv.destroyAllWindows() def main(args): video_link = args.video if args.video else 0 app(video_link, args.name, args.show, args.record) if __name__ == '__main__': LOG.info('Raspberry Pi: Head Pose\n') args = helper.getArgs() main(args) LOG.info('Process done')
face_image2 = image2[y1:y2, x1:x2] lm2 = landmarker.getLandmark(face_image2) aligned_face2 = aligner.align(face_image2, lm2) # ================================================================ emb1 = embedder.getEmb(face_image1) LOG.info('emb1 shape: {}'.format(emb1.shape)) emb2 = embedder.getEmb(face_image2) LOG.info('emb2 shape: {}'.format(emb2.shape)) dist = getDistance(emb1, emb2) LOG.info('distance: {:.4}'.format(dist)) # ================================================================ def main(args): image1_path = args.image1 image2_path = args.image2 app(image1_path, image2_path) if __name__ == '__main__': LOG.info('Raspberry Pi: Face Identification\n') args = helper.getArgs() main(args) LOG.info('Process done')
IDs_lst[i], i) fw.write(line) def app(data_path, data_name, verbal=True): image_fnames, image_shapes, bboxes_lst, IDs_lst = \ processDataFolder(data_path) train_cnt = int(cfg.TRAIN_RATIO * len(image_fnames)) val_cnt = len(image_fnames) - train_cnt createLSTFile(image_fnames[:train_cnt], image_shapes[:train_cnt], bboxes_lst[:train_cnt], IDs_lst[:train_cnt], 'train-' + data_name) createLSTFile(image_fnames[train_cnt:], image_shapes[train_cnt:], bboxes_lst[train_cnt:], IDs_lst[train_cnt:], 'val-' + data_name) def main(args): app(args.data, args.name, args.verbal) if __name__ == '__main__': LOG.info('Task: Generate REC data\n') args = getArgs() main(args) LOG.info('Process done')
_prx_t = time.time() - _start_t if len(bboxes): for i, landmark in enumerate(landmarks): for j, point in enumerate(landmark): cv.circle(image, tuple(point), 3, (0, 255, 0), -1) image = vis.plotBBoxes(image, bboxes, len(bboxes) * ['face'], scores) image = vis.plotInfo(image, 'Raspberry Pi - FPS: {:.3f}'.format(1 / _prx_t)) image = cv.cvtColor(np.asarray(image), cv.COLOR_BGR2RGB) cv.imshow(image_path, image) key = cv.waitKey(0) cv.destroyAllWindows() def main(args): app(args.image) if __name__ == '__main__': LOG.info('Raspberry Pi: Face Alignment\n') args = helper.getArgs() main(args) LOG.info('Process done')
frm = cv.imread(image_path) _start_t = time.time() scores, bboxes = face_detector.getFaces(frm, def_score=0.5) for i, bbox in enumerate(bboxes): x1, y1, x2, y2 = bbox face_img = frm[y1:y2, x1:x2] emo_idx = emotioner.getEmotion(face_img) LOG.info('emotion: {}'.format(emo_idx)) _prx_t = time.time() - _start_t # if len(bboxes): # frm = vis.plotBBoxes(frm, bboxes, len(bboxes) * ['face'], scores) # frm = vis.plotInfo(frm, 'Raspberry Pi - FPS: {:.3f}'.format(1/_prx_t)) # frm = cv.cvtColor(np.asarray(frm), cv.COLOR_BGR2RGB) cv.destroyAllWindows() def main(args): app(args.image) if __name__ == '__main__': LOG.info('Raspberry Pi: Emotion Recognition\n') args = helper.getArgs() main(args) LOG.info('Process done')