# In[5]: '''Binomial randomness --- Binomial distribution''' total_event = int(100) gInput = np.arange(total_event) output_level = total_event probability_peak = 0.5 randomSeed = np.random.binomial(output_level, probability_peak, total_event) sumP = 0 for i in range(total_event): sumP = sumP + randomSeed[i] meanP = sumP / (total_event) totalLevel = int(total_event / 1) category = alva.AlvaLevel(randomSeed, totalLevel, False) gLevel = category[0] numberLevel = category[1] binomial_D = total_event * AlvaBinomialD(np.arange(totalLevel), totalLevel, probability_peak) # plotting figure_name = '' file_suffix = '.png' save_figure = os.path.join(saving_dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 figure = plt.figure(numberingFig, figsize=AlvaFigSize) plot1 = figure.add_subplot(1, 2, 1)
plt.savefig(save_figure, dpi = 300) plt.show() # In[2]: '''Logistic randomness --- Logistic distribution''' totalPoint_Input = int(100 + 1) gInput = np.arange(totalPoint_Input) meanL = totalPoint_Input/2 randomSeed_normal = np.random.standard_normal(totalPoint_Input) randomSeed = np.random.logistic(0, 3, totalPoint_Input) totalLevel = int(totalPoint_Input/1) category = alva.AlvaLevel(randomSeed, totalLevel, False) gLevel = category[0] numberLevel = category[1] print category[2].shape # calculating the mean sumL = 0 for i in range(totalPoint_Input): sumL = sumL + randomSeed[i] current_mean = sumL/(totalPoint_Input) print ('current mean', current_mean) totalLevel = int(totalPoint_Input/1) category_normal = alva.AlvaLevel(randomSeed_normal, totalLevel, False) gLevel_normal = category_normal[0] numberLevel_normal = category_normal[1]