コード例 #1
0
ファイル: decorators.py プロジェクト: xtwxfxk/left5
        def wrapped(self, asin, is_cache=True):

            from amazon import Amazon
            md5 = hashlib.md5(asin)
            key = '%s.gz' % md5.hexdigest()

            product_info = Amazon.load_cache(key)
            if 'modified_date' in product_info and (
                    datetime.datetime.now() - product_info['modified_date']
            ).days < Amazon.CACHE_EXPIRED_DAYS:
                pass

            else:
                self.load('https://www.amazon.com/dp/%s' % asin)

                page = self.lr.body
                image_urls = []

                for ele in self.lr.xpaths('//div[@class="imgTagWrapper"]/img'):
                    if 'data-old-hires' in ele.attrib:
                        image_urls.append(ele.attrib['data-old-hires'])

                product_info['page'] = page
                product_info['image_urls'] = image_urls
                product_info['modified_date'] = datetime.datetime.now()

                Amazon.save_cache(key, product_info)

            return detail(self,
                          asin,
                          is_cache=is_cache,
                          page_info=product_info)
コード例 #2
0
ファイル: views.py プロジェクト: eitashuto/pyramid-tutorial
def amazon_info(request):
    title = request.params["title"]
    author = request.params["author"]

    keys = AmazonKeys()
    amazon = Amazon(keys.access_key, keys.secret_access_key, keys.associate_tag)
    amazon.setProxy("proxy.ome.toshiba.co.jp")

    result = {}
    try:
        result_xml = amazon.itemSearch("Books", Title=u"獄門島", Author=u"横溝正史", ResponseGroup="Medium")  # 本
        dom = xml.dom.minidom.parseString(result_xml)
        items = dom.getElementsByTagName("Item")
        if len(items) != 0:
            item = items[0]
            result["image"] = getValue(item, "MediumImage", "URL")
            result["url"] = getValue(item, "DetailPageURL")
            result["title"] = title
            print getValue(item, "ASIN"), getValue(item, "LargeImage", "URL"), getValue(
                item, "DetailPageURL"
            ), getValue(item, "Author"), getValue(item, "Title")
        dom.unlink()

    except HTTPError, e:
        print e.code
コード例 #3
0
ファイル: views.py プロジェクト: bmelton/SupportClassrooms
def get_asin(request):
    output = {}
    if request.method == "GET":
        if request.GET.get("url"):
            amazon      = Amazon()
            url = request.GET.get("url")
            asin        = amazon.get_asin_from_url(url)
            output["asin"] = asin
            return HttpResponse(json.dumps(output), content_type="application/json")
コード例 #4
0
ファイル: models.py プロジェクト: cgrice/apps
 def save(self):
     if not self.id:
         a = Amazon()    
         a.get_document(self.ISBN)
         self.title = a.title
         self.author = a.author
         self.summary = a.summary
         self.cover_image = a.cover_image
         self.book_image = settings.MEDIA_URL + '/media/book_' + str(random.randint(1,9)) + '.png'
         self.asin = a.asin
     super(Book, self).save()
コード例 #5
0
ファイル: views.py プロジェクト: bmelton/SupportClassrooms
def checkout_for_list(request, list):
    lists       = get_object_or_404(List, id=list)

    output      = {}
    amazon      = Amazon()
    
    amazon.get_items(list=list)
    cart = amazon.get_cart()

    output["url"] = "%s" % (cart.Cart.PurchaseURL)
    output["subtotal"] = "%s" % (cart.Cart.SubTotal.FormattedPrice)
    print cart.Cart.PurchaseURL

    return HttpResponse(json.dumps(output), content_type="application/json")
コード例 #6
0
ファイル: views.py プロジェクト: bmelton/SupportClassrooms
def get_item_for_asin(request, asin):
    output = {}
    if request.method == "GET":
        amazon                  = Amazon()
        item                    = amazon.get_item_by_asin(asin)
        output["asin"]          = str(asin)
        output["url"]           = str(item.Items.Item.DetailPageURL)
        output["manufacturer"]  = str(item.Items.Item.ItemAttributes.Manufacturer)
        output["product_group"] = str(item.Items.Item.ItemAttributes.ProductGroup)
        output["title"]         = str(item.Items.Item.ItemAttributes.Title)
        output["description"]   = str(item.Items.Item.ItemLinks.ItemLink.Description)
        output["short_url"]     = "http://amzn.com/%s" % asin

        return HttpResponse(json.dumps(output), content_type="application/json")
コード例 #7
0
def con_search(keyword):
    amazon = Amazon("", "")
    xml = amazon.itemSearch("Books", Keywords=keyword, ItemPage="1")

    # XMLから情報を取り出す
    from BeautifulSoup import BeautifulStoneSoup
    soup = BeautifulStoneSoup(xml)
    #10個のコンテンツをコンテンツテーブルへ格納
    for item in soup.findAll('item'):
        isbn10 = item.asin.contents[0]
        #issbn13
        #isbn13 = item.ean.contents[0]
        isbn13 = ''
        #author
        try:  #author(著者)はない場合があるのでエラー処理
            author = item.author.contents[0]
        except AttributeError:
            author = ""
        else:
            author = item.author.contents[0]
        title = item.title.contents[0]
        #url
        url = item.detailpageurl.contents[0]
        #image_url
        try:
            image_url = item.largeimage.url.contents[0]
        except NameError:
            image_url = ""
        except AttributeError:
            image_url = ""
        else:
            image_url = item.largeimage.url.contents[0]
        arasuji = HTMLParser(url)
        #文字参照を変換する
        arasuji = htmlentity2utf8(arasuji)
        #あらすじからいらない文字、記号を取り除く
        #print arasuji
        con_tag = extractKeyword(arasuji)
        con_tag = ','.join(con_tag)
        #print title,isbn10
        #DBへ格納する
        dbupdate(isbn10, isbn13, title, author, image_url, arasuji, con_tag)
    return
コード例 #8
0
ファイル: main.py プロジェクト: hiromu/bookcloud
def getAmazon(isbn):
    result = []
    amazon = Amazon(access_key, access_secret, associate_tag)
    xml = amazon.itemLookup(isbn,
                            SearchIndex='Books',
                            IdType='ISBN',
                            ReviewPage='1',
                            ResponseGroup='Reviews')

    soup = BeautifulSoup(xml)
    if soup.find('hasreviews').getText() == 'false':
        return result
    url = soup.find('iframeurl').contents[0]

    iframe = urllib.urlopen(url.replace('&amp;', '&'))
    soup = BeautifulSoup(iframe)
    for div in soup.findAll('div', {'style': 'margin-left:0.5em;'}):
        for i in div.findAll('div'):
            i.replaceWith('')
        result.append(div.getText())
    return result
コード例 #9
0
            print(f'wall: {time.time() - start}')
            f.write(f'wall: {time.time() - start}')


if __name__ == '__main__':
    args = config()

    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # For GCMC based on sample, we require node has its own features.
    # Otherwise (node_id is the feature), the model can not scale
    dataset = Amazon(args.data_name,
                     'cpu',
                     mix_cpu_gpu=args.mix_cpu_gpu,
                     use_one_hot_fea=args.use_one_hot_fea,
                     symm=args.gcn_agg_norm_symm,
                     test_ratio=args.data_test_ratio,
                     valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    args.dst_in_units = dataset.item_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], dataset)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices, dataset)
コード例 #10
0
from amazon import Amazon
from pesquisa import Pesquisa

pesquisa = Pesquisa()
produto = 'iphone'
conteudo = pesquisa.procurarProduto(produto)

amazon = Amazon()
amazon.recuperarProdutos(conteudo)
amazon.recuperarPrecos(conteudo)
amazon.gravarDados('produto2')

pesquisa.finalizar()
コード例 #11
0
ファイル: aws_actions.py プロジェクト: ccalabro/aws-handler
from database import DataBase
from config import Config
from amazon import Amazon

if __name__ == '__main__':
	config = Config()

	dbData = config.data['database']
	awsData = config.data['aws']

	# Connect to MySQL DB
	db = DataBase(dbData['host'], dbData['user'], dbData['pass'], dbData['name'])

	# Connect to AWS
	amazon = Amazon(awsData['key_name'], awsData['secret_key'])

	if hasattr(config, 'domains') and config.domains == ['all']:
		config.domains = []
		domains_list = db.get_all(db.cursor, 'domains')
		if domains_list == []:
			sys.exit('No domains records on database.')
		for d in domains_list:
			config.domains.append(d['name'])

	if config.action == 'check':
		for domain_name in config.domains:
			domain = db.get(db.cursor, 'domains', 'name', domain_name)
			if not domain:
				print "[ERROR] The domain doesn't exist"
				sys.exit(0)
コード例 #12
0
        elif options.loglevel == "INFO":
            logLevelInt = 3
        elif options.loglevel == "WARN":
            logLevelInt = 4
        else:
            LOG.warning("Unknown Log level %s given. Defaulting to INFO." %
                        options.loglevel)
        widevineAdapter.SetLogLevel(logLevelInt)

    if options.deleteDumpDir:
        os.system("rm {0}/*".format(constants.DUMP_DIRECTORY))

    if not os.path.isdir(constants.DUMP_DIRECTORY):
        os.mkdir(constants.DUMP_DIRECTORY)

    az = Amazon()

    if URL_REGEX.match(amazonUrlOrAsin):
        LOG.info("Using amazon url: %s" % amazonUrlOrAsin)
        # login is needed else e.g. no asin can be retrieved
        az.logIn()

        titleAmazonMovieEntryMap = az.getVideoPageDetailsMapping(
            amazonUrlOrAsin)
        for key, val in titleAmazonMovieEntryMap.items():
            LOG.info("%s: %s" % (key, val))
            LOG.info("")
        if {} == titleAmazonMovieEntryMap:
            LOG.warning("No video data could be found! Mapping was empty.")
    else:
        LOG.info("Launching rendering script for ASIN %s" % amazonUrlOrAsin)
コード例 #13
0
def main(secondsToAudit, configFile, gracePeriod, historyFile, logFile, auditPayments, auditRefunds):
    global _config
    global _civiDB
    global _awsLink
    global _stompLink
    global _logFile

    startTime = datetime.fromtimestamp(int(time.time()) - int(secondsToAudit), pytz.utc)
    endTime = datetime.fromtimestamp(int(time.time()) - int(gracePeriod), pytz.utc)
    print("AWS audit requested from %s to %s" % (startTime.isoformat(), endTime.isoformat()))

    # === Initialize the configuration file ===
    localdir = os.path.dirname(os.path.abspath(__file__))
    _config = SafeConfigParser()
    fileList = ["%s/amazon-audit.cfg" % localdir]
    if configFile is not None:
        fileList.append(configFile)
    _config.read(fileList)

    # === Open up ze STOMP ===
    _stompLink = DistStomp(_config.get('Stomp', 'server'), _config.getint('Stomp', 'port'))
    _stompLink.connect()
    
    # === Connection to Amazon ===
    _awsLink = Amazon(
        awsEndpoint=_config.get('AwsConfig', 'endpoint'),
        awsAccessKey=_config.get('AwsConfig', 'accessKey'),
        awsSecret=_config.get('AwsConfig', 'secretKey')
    )

    # === Connection to MySQL ===
    _civiDB = MySQL.connect(
        _config.get('MySQL', 'host'),
        _config.get('MySQL', 'user'),
        _config.get('MySQL', 'password'),
        _config.get('MySQL', 'schema')
    )

    # === Open up the history and log files ===
    # If the history file exists, it will modify the start time of this script to be the end time of the
    # history file.
    hfile = None
    historyStart = startTime
    if historyFile and os.path.exists(historyFile):
        hfile = open(historyFile, 'r')
        if hfile.readline().strip() == AWS_HISTORY_FILE_VERSTR:
            historyStart = dateutil.parser.parse(hfile.readline().strip())
            historyEnd = dateutil.parser.parse(hfile.readline().strip())
            startTime = historyEnd
            print("History file modified search period, now %s to %s" % (startTime.isoformat(), endTime.isoformat()))
    else:
        print('Not starting with a valid history file.')

    if logFile:
        _logFile = open(logFile, 'a')
        _logFile.write("!!! Starting run for dates %s -> %s\n" % (startTime.isoformat(), endTime.isoformat()))

    # === Sanity checks ===
    if endTime < startTime:
         startTime = endTime
    
    # === Main Application ===
    awsTransactions = []

    # --- Process all previously pending transactions from the history file. If the transaction is still in some form
    #     of pending, add it back to the history list.
    historyCount = 0
    historyList = []
    historyStats = {
        'Success': 0,
        'Pending': 0,
        'Failed': 0,
        'Ignored': 0
    }
    if hfile:
        print("Processing history file")
        for txn in hfile:
            historyCount += 1
            awsTransactions.append(json.loads(txn))
        hfile.close()

    # --- Obtain AWS history ---
    if auditPayments:
        print("Obtaining AWS payment transactions for the period %s -> %s" % (startTime.isoformat(), endTime.isoformat()))
        awsTransactions += _awsLink.getAccountActivity(startTime, endDate=endTime, fpsOperation='Pay')
        print("Obtained %d transactions" % len(awsTransactions))

    if auditRefunds:
        print("Obtaining AWS refund transactions for the period %s -> %s" % (startTime.isoformat(), endTime.isoformat()))
        awsTransactions += _awsLink.getAccountActivity(startTime, endDate=endTime, fpsOperation='Refund')
        print("Obtained %d transactions" % len(awsTransactions))
    
    # --- Main loop: checks each aws transaction against the Civi database; adding it if it doesn't exist ---
    txncount = 0
    for txn in awsTransactions:
        txncount += 1
        result = dispatchTransaction(txn, auditPayments, auditRefunds)
        historyStats[result] += 1
        if result == 'Pending':
            historyList.append(txn)

    print("\n--- Finished processing of messages. ---\n")

    # --- Write the history file ---
    if historyFile:
        print("Rewriting history file with %d transactions" % len(historyList))
        hfile = open(historyFile, 'w')
        hfile.write("%s\n%s\n%s\n" % (AWS_HISTORY_FILE_VERSTR, historyStart.isoformat(), endTime.isoformat()))
        for txn in historyList:
            hfile.write("%s\n" % json.dumps(txn))
        print("Flushing history file in preparation for main loop")
        hfile.flush()

    # --- Final statistics
    print("Processed %d AWS messages" % txncount)
    print(" ... of which %d messages were from history" % historyCount)
    print("This resulted in the following:")
    for entry in historyStats.items():
        print(" %s Messages: %d" % entry)

    # === Final Application Cleanup ===
    print("\nCleaning up.")
    _civiDB.close()
    _stompLink.disconnect()

    if hfile:
        hfile.close()
    if _logFile:
        _logFile.close()

    time.sleep(1)   # Let the STOMP library catch up
コード例 #14
0
ファイル: train.py プロジェクト: tobiasweede/rs-via-gnn
def train(args):
    print(args)
    if args.data_name == 'electronic':
        dataset = Amazon(args.data_name,
                         args.device,
                         use_one_hot_fea=args.use_one_hot_fea,
                         symm=args.gcn_agg_norm_symm,
                         test_ratio=args.data_test_ratio,
                         valid_ratio=args.data_valid_ratio)
    else:
        dataset = MovieLens(args.data_name,
                            args.device,
                            use_one_hot_fea=args.use_one_hot_fea,
                            symm=args.gcn_agg_norm_symm,
                            test_ratio=args.data_test_ratio,
                            valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    if args.data_name == 'electronic':
        args.dst_in_units = dataset.item_feature_shape[1]
    else:
        args.dst_in_units = dataset.item_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    start = time.time()
    ### build the net
    net = Net(args=args)
    net = net.to(args.device)
    nd_possible_rating_values = th.FloatTensor(
        dataset.possible_rating_values).to(args.device)
    rating_loss_net = nn.CrossEntropyLoss()
    learning_rate = args.train_lr
    optimizer = get_optimizer(args.train_optimizer)(net.parameters(),
                                                    lr=learning_rate)
    print("Loading network finished ...\n")

    ### perpare training data
    train_gt_labels = dataset.train_labels
    train_gt_ratings = dataset.train_truths

    ### prepare the logger
    train_loss_logger = MetricLogger(
        ['iter', 'loss', 'rmse'], ['%d', '%.4f', '%.4f'],
        os.path.join(args.save_dir, 'train_loss%d.csv' % args.save_id))
    valid_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
                                     os.path.join(
                                         args.save_dir,
                                         'valid_loss%d.csv' % args.save_id))
    test_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
                                    os.path.join(
                                        args.save_dir,
                                        'test_loss%d.csv' % args.save_id))

    ### declare the loss information
    best_valid_rmse = np.inf
    no_better_valid = 0
    best_iter = -1
    count_rmse = 0
    count_num = 0
    count_loss = 0

    dataset.train_enc_graph = dataset.train_enc_graph.int().to(args.device)
    dataset.train_dec_graph = dataset.train_dec_graph.int().to(args.device)
    dataset.valid_enc_graph = dataset.train_enc_graph
    dataset.valid_dec_graph = dataset.valid_dec_graph.int().to(args.device)
    dataset.test_enc_graph = dataset.test_enc_graph.int().to(args.device)
    dataset.test_dec_graph = dataset.test_dec_graph.int().to(args.device)

    print("Start training ...")
    dur = []
    for iter_idx in range(1, args.train_max_iter):
        if iter_idx > 3:
            t0 = time.time()
        net.train()
        if args.data_name == 'electronic':
            pred_ratings = net(dataset.train_enc_graph,
                               dataset.train_dec_graph, dataset.user_feature,
                               dataset.item_feature)
        else:
            pred_ratings = net(dataset.train_enc_graph,
                               dataset.train_dec_graph, dataset.user_feature,
                               dataset.item_feature)
        loss = rating_loss_net(pred_ratings, train_gt_labels).mean()
        count_loss += loss.item()
        optimizer.zero_grad()
        loss.backward()
        nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip)
        optimizer.step()

        if iter_idx > 3:
            dur.append(time.time() - t0)

        if iter_idx == 1:
            print("Total #Param of net: %d" % (torch_total_param_num(net)))
            print(
                torch_net_info(net,
                               save_path=os.path.join(
                                   args.save_dir, 'net%d.txt' % args.save_id)))

        real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
                             nd_possible_rating_values.view(1, -1)).sum(dim=1)
        rmse = ((real_pred_ratings - train_gt_ratings)**2).sum()
        count_rmse += rmse.item()
        count_num += pred_ratings.shape[0]

        if iter_idx % args.train_log_interval == 0:
            train_loss_logger.log(iter=iter_idx,
                                  loss=count_loss / (iter_idx + 1),
                                  rmse=count_rmse / count_num)
            logging_str = "Iter={}, loss={:.4f}, rmse={:.4f}, time={:.4f}".format(
                iter_idx, count_loss / iter_idx, count_rmse / count_num,
                np.average(dur))
            count_rmse = 0
            count_num = 0

        if iter_idx % args.train_valid_interval == 0:
            valid_rmse = evaluate(args=args,
                                  net=net,
                                  dataset=dataset,
                                  segment='valid')
            valid_loss_logger.log(iter=iter_idx, rmse=valid_rmse)
            logging_str += ',\tVal RMSE={:.4f}'.format(valid_rmse)

            if valid_rmse < best_valid_rmse:
                best_valid_rmse = valid_rmse
                no_better_valid = 0
                best_iter = iter_idx
                test_rmse = evaluate(args=args,
                                     net=net,
                                     dataset=dataset,
                                     segment='test')
                best_test_rmse = test_rmse
                test_loss_logger.log(iter=iter_idx, rmse=test_rmse)
                logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
            else:
                no_better_valid += 1
                if no_better_valid > args.train_early_stopping_patience\
                    and learning_rate <= args.train_min_lr:
                    logging.info(
                        "Early stopping threshold reached. Stop training.")
                    break
                if no_better_valid > args.train_decay_patience:
                    new_lr = max(learning_rate * args.train_lr_decay_factor,
                                 args.train_min_lr)
                    if new_lr < learning_rate:
                        learning_rate = new_lr
                        logging.info("\tChange the LR to %g" % new_lr)
                        for p in optimizer.param_groups:
                            p['lr'] = learning_rate
                        no_better_valid = 0
        if iter_idx % args.train_log_interval == 0:
            print(logging_str)
    print('Best Iter Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.
          format(best_iter, best_valid_rmse, best_test_rmse))
    train_loss_logger.close()
    valid_loss_logger.close()
    test_loss_logger.close()

    with open(os.path.join(args.save_dir, f'duration_{args.save_id:d}.txt'),
              'a') as f:
        print(f'wall: {time.time() - start}')
        f.write(f'wall: {time.time() - start}')
コード例 #15
0
ファイル: add_amazon.py プロジェクト: y42sora/soraSource
 def __init__(self):
     self.amazon = Amazon(api_key.amazon_key, api_key.amazon_secret)
     self.price_file = "pricebg.csv"
コード例 #16
0
ファイル: add_amazon.py プロジェクト: y42sora/soraSource
class AmazonGet():
    # Amazon のカートへ商品を入れる
    def __init__(self):
        self.amazon = Amazon(api_key.amazon_key, api_key.amazon_secret)
        self.price_file = "pricebg.csv"

    def create_cart(self, asin):
        # カートを作る。
        # 以降は返り値のcartidとhmacが必要
        # 購入はpurchaseurlにアクセス
        res = self.amazon.cartCreate(str(asin), 1)
        soup = BeautifulSoup(res)
        ans = []
        try:
            ans.append(soup.find('cartid').text.encode('sjis'))
            ans.append(soup.find('hmac').text.encode('sjis'))
            ans.append(soup.find('urlencodedhmac').text.encode('sjis'))
            ans.append(soup.find('purchaseurl').text)
        except UnicodeEncodeError:
            return []
        except AttributeError:
            return []
        return ans

    def cart_add(self, asin, cartid, hmac):
        # 指定された商品を一個カートに入れる
        res = self.amazon.cartAdd(asin, 1, cartid, hmac)

    def cart_get(self, cartid, hmac):
        # カートの情報を手に入れる
        # デバッグ用
        res = self.amazon.cartGet(cartid, hmac)
        soup = BeautifulSoup(res)
        print soup.prettify()

        ans = []
        try:
            ans.append(soup.find('subtotal').text.encode('sjis'))
        except UnicodeEncodeError:
            return []
        except AttributeError:
            return []
        return ans

    def solv_nap(self, nap_size, item_list):
        """
        ナップサック問題を解く
        価値は全て1、商品の大きさを実際の価格にしている
        これにより、指定された値段内で商品を詰められる
        """
        gold = [-1] * (nap_size + 1)

        gold[0] = 0
        for item in item_list:
            for i in range(nap_size + 1):
                if gold[i] != -1:
                    if i + item.size < nap_size:
                        if gold[i + item.size] < gold[i] + item.price:
                            gold[i + item.size] = gold[i] + item.price

        # 最も最大金額に近いものを取り出す
        for i in range(nap_size, 0, -1):
            if gold[i] != -1:
                x = i
                break

        # 何を買ったかを調べる
        ans = []
        item_list.reverse()
        for item in item_list:
            if 0 <= x - item.size:
                if gold[x] != gold[x - item.size]:
                    ans.append((str(item.size), str(item.asin)))
                    x -= item.size
        return ans

    def get_amazon_url(self, money):
        # 指定された金額でぴったりになるように商品を買う
        # 買う為のurlを返す
        reader = csv.reader(open(self.price_file, 'r'))

        # 必要な情報は値段とasinなのでそれを取り出す
        prices = set([])
        item_list = []
        for row in reader:
            if int(row[1]) not in prices:
                item_list.append(Item(1, int(row[1]), 0, row[0], row[2]))
                prices.add(int(row[1]))

        items = self.solv_nap(money, item_list)

        if items != None:
            id = self.create_cart(items[0][1])
        for item in items[1:]:
            self.cart_add(item[1], id[0], id[1])

        return id[3]
コード例 #17
0
ファイル: add_amazon.py プロジェクト: y42sora/soraSource
 def __init__(self):
     self.amazon = Amazon(api_key.amazon_key, api_key.amazon_secret)
     self.price_file = "pricebg.csv"
コード例 #18
0
 def get_amazon_data(self, query='Mobile', total_reviews=5):
     from amazon import Amazon
     obj = Amazon()
     review, rating = obj.search(query=query, total_reviews=total_reviews)
     return [review, rating]
コード例 #19
0
import binascii
import os
import struct
import sys

# reset working directory to scripts directory
dir_path = os.path.dirname(os.path.realpath(__file__))
os.chdir(dir_path)

sys.stderr.write("[license_req.py] Using working directory: %s\n" % os.getcwd())

from amazon import Amazon

if __name__ == "__main__":
    az = Amazon()
    az.logIn()

    if len(sys.argv) != 3:
        raise Exception("Usage: python %s resId challenge" % sys.argv[0])

    resId = sys.argv[1]
    challenge = sys.argv[2]
    sys.stderr.write("[license_req.py] challenge (%d): %s\n" % (len(challenge), challenge) )
    serverResponse = az.getWidevine2License(resId, challenge)

    assert ("widevine2License" in serverResponse)
    assert ("license" in serverResponse["widevine2License"])
    assert ("metadata" in serverResponse["widevine2License"])
    assert ("keyMetadata" in serverResponse["widevine2License"]["metadata"])

    license = serverResponse["widevine2License"]["license"]
コード例 #20
0
from flipkart import Flipkart
from amazon import Amazon
from olx import Olx


product_name = input("Enter product name:- ")


# Fetch data from Flipkart and store them into flipkart.csv
f = Flipkart(product_name)
f.get_details()
f.store_data()


# Fetch data from Amazon and store them into amazon.csv
a = Amazon(product_name)
a.get_details()
a.store_data()


# Fetch data from Olx and store them into olx.csv
o = Olx(product_name)
o.get_details()
o.store_data()



# read data from CSVs files and show them on bar-plot
def get_data():

    with open('amazon.csv', 'r') as d:
コード例 #21
0
def main(args):

    ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime())

    splits = ['train', 'valid'] + (['test'] if args.test else [])

    datasets = OrderedDict()
    for split in splits:
        # datasets[split] = BGoogle(
        #     data_dir=args.data_dir,
        #     split=split,
        #     create_data=args.create_data,
        #     batch_size=args.batch_size ,
        #     max_sequence_length=args.max_sequence_length,
        #     min_occ=args.min_occ
        # )

        datasets[split] = Amazon(data_dir=args.data_dir,
                                 split=split,
                                 create_data=args.create_data,
                                 batch_size=args.batch_size,
                                 max_sequence_length=args.max_sequence_length,
                                 min_occ=args.min_occ)

    model = SentenceVAE(vocab_size=datasets['train'].vocab_size,
                        sos_idx=datasets['train'].sos_idx,
                        eos_idx=datasets['train'].eos_idx,
                        pad_idx=datasets['train'].pad_idx,
                        unk_idx=datasets['train'].unk_idx,
                        max_sequence_length=args.max_sequence_length,
                        embedding_size=args.embedding_size,
                        rnn_type=args.rnn_type,
                        hidden_size=args.hidden_size,
                        word_dropout=args.word_dropout,
                        embedding_dropout=args.embedding_dropout,
                        latent_size=args.latent_size,
                        num_layers=args.num_layers,
                        bidirectional=args.bidirectional)

    if torch.cuda.is_available():
        model = model.cuda()

    print(model)

    tokenizer = TweetTokenizer(preserve_case=False)
    vocab_file = "amazon.vocab.json"
    with open(os.path.join(args.data_dir, vocab_file), 'r') as file:
        vocab = json.load(file)
        w2i, i2w = vocab['w2i'], vocab['i2w']

    if args.tensorboard_logging:
        writer = SummaryWriter(
            os.path.join(args.logdir, expierment_name(args, ts)))
        writer.add_text("model", str(model))
        writer.add_text("args", str(args))
        writer.add_text("ts", ts)

    # save_model_path = os.path.join(args.save_model_path, ts)
    save_model_path = args.save_model_path

    if not os.path.exists(save_model_path):
        os.makedirs(save_model_path)

    def kl_anneal_function(anneal_function, step, k, x0):
        if anneal_function == 'logistic':
            return float(1 / (1 + np.exp(-k * (step - x0))))
        elif anneal_function == 'linear':
            return min(1, step / x0)

    NLL = torch.nn.NLLLoss(size_average=False,
                           ignore_index=datasets['train'].pad_idx)

    def loss_fn(logp, target, length, mean, logv, anneal_function, step, k,
                x0):

        # cut-off unnecessary padding from target, and flatten
        target = target[:, :torch.max(length).data].contiguous().view(-1)
        logp = logp.view(-1, logp.size(2))

        # Negative Log Likelihood
        NLL_loss = NLL(logp, target)

        # KL Divergence
        KL_loss = -0.5 * torch.sum(1 + logv - mean.pow(2) - logv.exp())
        KL_weight = kl_anneal_function(anneal_function, step, k, x0)

        return NLL_loss, KL_loss, KL_weight

    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

    tensor = torch.cuda.FloatTensor if torch.cuda.is_available(
    ) else torch.Tensor
    step = 0
    save_mode = True
    last_ELBO = 1e32

    for epoch in range(args.epochs):
        print("+" * 20)

        # f_test_example(model, tokenizer, w2i, i2w)
        for split in splits:

            # data_loader = DataLoader(
            #     dataset=datasets[split],
            #     batch_size=args.batch_size,
            #     shuffle=split=='train',
            #     num_workers=cpu_count(),
            #     pin_memory=torch.cuda.is_available()
            # )
            batch_size = args.batch_size
            tracker = defaultdict(tensor)

            # Enable/Disable Dropout
            if split == 'train':
                model.train()
            else:
                model.eval()

            # for iteration, batch in enumerate(data_loader):
            iteration = 0
            iteration_total = datasets[split].batch_num
            print("batch_num", iteration_total)
            for input_batch_tensor, target_batch_tensor, length_batch_tensor in datasets[
                    split]:

                if torch.is_tensor(input_batch_tensor):
                    input_batch_tensor = to_var(input_batch_tensor)

                if torch.is_tensor(target_batch_tensor):
                    target_batch_tensor = to_var(target_batch_tensor)

                if torch.is_tensor(length_batch_tensor):
                    length_batch_tensor = to_var(length_batch_tensor)

                # batch_size = batch['input'].size(0)

                # for k, v in batch.items():
                #     if torch.is_tensor(v):
                #         batch[k] = to_var(v)

                # Forward pass
                # logp, mean, logv, z = model(batch['input'], batch['length'])
                logp, mean, logv, z = model(input_batch_tensor,
                                            length_batch_tensor)

                # loss calculation
                NLL_loss, KL_loss, KL_weight = loss_fn(
                    logp, target_batch_tensor, length_batch_tensor, mean, logv,
                    args.anneal_function, step, args.k, args.x0)

                loss = (NLL_loss + KL_weight * KL_loss) / batch_size

                # backward + optimization
                if split == 'train':
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    step += 1

                iteration += 1
                # bookkeepeing
                # print("elbo", tracker['ELBO'])
                # print("loss", loss)
                if iteration == 0:
                    tracker['ELBO'] = loss.data
                    tracker['ELBO'] = tracker['ELBO'].view(1)
                else:
                    tracker['ELBO'] = torch.cat(
                        (tracker['ELBO'], loss.view(1)))

                if args.tensorboard_logging:
                    # print(loss.data)
                    writer.add_scalar("%s/ELBO" % split.upper(),
                                      loss.data.item(),
                                      epoch * iteration_total + iteration)
                    writer.add_scalar("%s/NLL Loss" % split.upper(),
                                      NLL_loss.data.item() / batch_size,
                                      epoch * iteration_total + iteration)
                    writer.add_scalar("%s/KL Loss" % split.upper(),
                                      KL_loss.data.item() / batch_size,
                                      epoch * iteration_total + iteration)
                    writer.add_scalar("%s/KL Weight" % split.upper(),
                                      KL_weight,
                                      epoch * iteration_total + iteration)

                if iteration % args.print_every == 0 or iteration + 1 == iteration_total:
                    print(
                        "%s Batch %04d/%i, Loss %9.4f, NLL-Loss %9.4f, KL-Loss %9.4f, KL-Weight %6.3f"
                        % (split.upper(), iteration, iteration_total - 1,
                           loss.data.item(), NLL_loss.data.item() / batch_size,
                           KL_loss.data.item() / batch_size, KL_weight))

                # if split == 'valid':
                # if 'target_sents' not in tracker:
                #     tracker['target_sents'] = list()
                # tracker['target_sents'] += idx2word(batch['target'].data, i2w=datasets['train'].get_i2w(), pad_idx=datasets['train'].pad_idx)

                # # print("z", tracker['z'], z)
                # tracker['z'] = torch.cat((tracker['z'], z.data), dim=0)
                # break

            print("%s Epoch %02d/%i, Mean ELBO %9.4f" %
                  (split.upper(), epoch, args.epochs,
                   torch.mean(tracker['ELBO'])))

            cur_ELBO = torch.mean(tracker['ELBO'])
            if args.tensorboard_logging:
                writer.add_scalar("%s-Epoch/ELBO" % split.upper(), cur_ELBO,
                                  epoch)

            if split == "valid":
                if cur_ELBO < last_ELBO:
                    save_mode = True
                else:
                    save_mode = False
                last_ELBO = cur_ELBO

            # save a dump of all sentences and the encoded latent space
            # if split == 'valid':
            #     dump = {'target_sents':tracker['target_sents'], 'z':tracker['z'].tolist()}
            #     if not os.path.exists(os.path.join('dumps', ts)):
            #         os.makedirs('dumps/'+ts)
            #     with open(os.path.join('dumps/'+ts+'/valid_E%i.json'%epoch), 'w') as dump_file:
            #         json.dump(dump,dump_file)

            # save checkpoint
            if split == 'train':
                # checkpoint_path = os.path.join(save_model_path, "E%i.pytorch"%(epoch))
                checkpoint_path = os.path.join(save_model_path, "best.pytorch")
                if save_mode == True:
                    torch.save(model.state_dict(), checkpoint_path)
                    print("Model saved at %s" % checkpoint_path)
コード例 #22
0
ファイル: app.py プロジェクト: Ninh/AmazonDecisionEngine

app.add_url_rule('/',
				 view_func=Main.as_view('main'),
				 methods=["GET"])
app.add_url_rule('/<page>/',
				 view_func=Main.as_view('page'),
				 methods=["GET"])
app.add_url_rule('/login/',
				 view_func=Login.as_view('login'),
				 methods=["GET","POST"])
app.add_url_rule('/register/',
				 view_func=Register.as_view('register'),
				 methods=["GET","POST"])
app.add_url_rule('/amazon/',
				 view_func=Amazon.as_view('amazon'),
				 methods=["GET","POST"])


@app.errorhandler(404)
def page_not_found(error):
    return flask.render_template('404.html'), 404

# Close DB
@app.teardown_appcontext
def close_connection(exception):
	db = getattr(g, '_database', None)
	if db is not None:
		db.close()

app.debug = True
コード例 #23
0
ファイル: add_amazon.py プロジェクト: y42sora/soraSource
class AmazonGet():
    # Amazon のカートへ商品を入れる
    def __init__(self):
        self.amazon = Amazon(api_key.amazon_key, api_key.amazon_secret)
        self.price_file = "pricebg.csv"

    def create_cart(self,asin):
        # カートを作る。
        # 以降は返り値のcartidとhmacが必要
        # 購入はpurchaseurlにアクセス
        res = self.amazon.cartCreate(str(asin), 1)
        soup = BeautifulSoup(res)
        ans = []
        try:
            ans.append(soup.find('cartid').text.encode('sjis'))
            ans.append(soup.find('hmac').text.encode('sjis'))
            ans.append(soup.find('urlencodedhmac').text.encode('sjis'))
            ans.append(soup.find('purchaseurl').text)
        except UnicodeEncodeError:
            return []
        except AttributeError:
            return []
        return ans
    
    def cart_add(self,asin, cartid, hmac):
        # 指定された商品を一個カートに入れる
        res = self.amazon.cartAdd(asin,1,cartid, hmac)
        
    def cart_get(self, cartid, hmac):
        # カートの情報を手に入れる
        # デバッグ用
        res = self.amazon.cartGet(cartid, hmac)
        soup = BeautifulSoup(res)
        print soup.prettify()
    
        ans = []
        try:
            ans.append(soup.find('subtotal').text.encode('sjis'))
        except UnicodeEncodeError:
            return []
        except AttributeError:
            return []
        return ans

    def solv_nap(self,nap_size, item_list):
        """
        ナップサック問題を解く
        価値は全て1、商品の大きさを実際の価格にしている
        これにより、指定された値段内で商品を詰められる
        """
        gold = [-1] * (nap_size+1)
        
        gold[0] = 0
        for item in item_list:
            for i in range(nap_size+1):
                if gold[i] != -1:
                    if i+item.size < nap_size:
                        if gold[i+item.size] < gold[i] + item.price:
                            gold[i+item.size] = gold[i]+item.price
        
        # 最も最大金額に近いものを取り出す
        for i in range(nap_size, 0, -1):
            if gold[i] != -1:
                x = i
                break
            
        # 何を買ったかを調べる
        ans = []
        item_list.reverse()
        for item in item_list:
            if 0 <= x - item.size:
                if gold[x] != gold[x-item.size]: 
                    ans.append((str(item.size),str(item.asin)))
                    x -= item.size
        return ans
    
    def get_amazon_url(self,money):
        # 指定された金額でぴったりになるように商品を買う
        # 買う為のurlを返す
        reader = csv.reader(open(self.price_file, 'r'))
    
        # 必要な情報は値段とasinなのでそれを取り出す
        prices = set([])
        item_list = []
        for row in reader:
            if int(row[1]) not in prices:
                item_list.append(Item(1,int(row[1]),0,row[0], row[2]))
                prices.add(int(row[1]))
        
        items = self.solv_nap(money, item_list)
        
        if items != None:
            id = self.create_cart(items[0][1])
        for item in items[1:]:
            self.cart_add(item[1], id[0], id[1])
            
        return id[3]
コード例 #24
0
def main(secondsToAudit, configFile, gracePeriod, historyFile, logFile,
         auditPayments, auditRefunds):
    global _config
    global _civiDB
    global _awsLink
    global _stompLink
    global _logFile

    startTime = datetime.fromtimestamp(
        int(time.time()) - int(secondsToAudit), pytz.utc)
    endTime = datetime.fromtimestamp(
        int(time.time()) - int(gracePeriod), pytz.utc)
    print("AWS audit requested from %s to %s" %
          (startTime.isoformat(), endTime.isoformat()))

    # === Initialize the configuration file ===
    localdir = os.path.dirname(os.path.abspath(__file__))
    _config = SafeConfigParser()
    fileList = ["%s/amazon-audit.cfg" % localdir]
    if configFile is not None:
        fileList.append(configFile)
    _config.read(fileList)

    # === Open up ze STOMP ===
    _stompLink = DistStomp(_config.get('Stomp', 'server'),
                           _config.getint('Stomp', 'port'))
    _stompLink.connect()

    # === Connection to Amazon ===
    _awsLink = Amazon(awsEndpoint=_config.get('AwsConfig', 'endpoint'),
                      awsAccessKey=_config.get('AwsConfig', 'accessKey'),
                      awsSecret=_config.get('AwsConfig', 'secretKey'))

    # === Connection to MySQL ===
    _civiDB = MySQL.connect(_config.get('MySQL', 'host'),
                            _config.get('MySQL', 'user'),
                            _config.get('MySQL', 'password'),
                            _config.get('MySQL', 'schema'))

    # === Open up the history and log files ===
    # If the history file exists, it will modify the start time of this script to be the end time of the
    # history file.
    hfile = None
    historyStart = startTime
    if historyFile and os.path.exists(historyFile):
        hfile = open(historyFile, 'r')
        if hfile.readline().strip() == AWS_HISTORY_FILE_VERSTR:
            historyStart = dateutil.parser.parse(hfile.readline().strip())
            historyEnd = dateutil.parser.parse(hfile.readline().strip())
            startTime = historyEnd
            print("History file modified search period, now %s to %s" %
                  (startTime.isoformat(), endTime.isoformat()))
    else:
        print('Not starting with a valid history file.')

    if logFile:
        _logFile = open(logFile, 'a')
        _logFile.write("!!! Starting run for dates %s -> %s\n" %
                       (startTime.isoformat(), endTime.isoformat()))

    # === Sanity checks ===
    if endTime < startTime:
        startTime = endTime

    # === Main Application ===
    awsTransactions = []

    # --- Process all previously pending transactions from the history file. If the transaction is still in some form
    #     of pending, add it back to the history list.
    historyCount = 0
    historyList = []
    historyStats = {'Success': 0, 'Pending': 0, 'Failed': 0, 'Ignored': 0}
    if hfile:
        print("Processing history file")
        for txn in hfile:
            historyCount += 1
            awsTransactions.append(json.loads(txn))
        hfile.close()

    # --- Obtain AWS history ---
    if auditPayments:
        print("Obtaining AWS payment transactions for the period %s -> %s" %
              (startTime.isoformat(), endTime.isoformat()))
        awsTransactions += _awsLink.getAccountActivity(startTime,
                                                       endDate=endTime,
                                                       fpsOperation='Pay')
        print("Obtained %d transactions" % len(awsTransactions))

    if auditRefunds:
        print("Obtaining AWS refund transactions for the period %s -> %s" %
              (startTime.isoformat(), endTime.isoformat()))
        awsTransactions += _awsLink.getAccountActivity(startTime,
                                                       endDate=endTime,
                                                       fpsOperation='Refund')
        print("Obtained %d transactions" % len(awsTransactions))

    # --- Main loop: checks each aws transaction against the Civi database; adding it if it doesn't exist ---
    txncount = 0
    for txn in awsTransactions:
        txncount += 1
        result = dispatchTransaction(txn, auditPayments, auditRefunds)
        historyStats[result] += 1
        if result == 'Pending':
            historyList.append(txn)

    print("\n--- Finished processing of messages. ---\n")

    # --- Write the history file ---
    if historyFile:
        print("Rewriting history file with %d transactions" % len(historyList))
        hfile = open(historyFile, 'w')
        hfile.write("%s\n%s\n%s\n" %
                    (AWS_HISTORY_FILE_VERSTR, historyStart.isoformat(),
                     endTime.isoformat()))
        for txn in historyList:
            hfile.write("%s\n" % json.dumps(txn))
        print("Flushing history file in preparation for main loop")
        hfile.flush()

    # --- Final statistics
    print("Processed %d AWS messages" % txncount)
    print(" ... of which %d messages were from history" % historyCount)
    print("This resulted in the following:")
    for entry in historyStats.items():
        print(" %s Messages: %d" % entry)

    # === Final Application Cleanup ===
    print("\nCleaning up.")
    _civiDB.close()
    _stompLink.disconnect()

    if hfile:
        hfile.close()
    if _logFile:
        _logFile.close()

    time.sleep(1)  # Let the STOMP library catch up
コード例 #25
0
def main(args):

    data_name = args.data_name
    with open(args.data_dir+data_name+'.vocab.json', 'r') as file:
        vocab = json.load(file)

    w2i, i2w = vocab['w2i'], vocab['i2w']

    model = SentenceVAE(
        vocab_size=len(w2i),
        sos_idx=w2i['<sos>'],
        eos_idx=w2i['<eos>'],
        pad_idx=w2i['<pad>'],
        unk_idx=w2i['<unk>'],
        max_sequence_length=args.max_sequence_length,
        embedding_size=args.embedding_size,
        rnn_type=args.rnn_type,
        hidden_size=args.hidden_size,
        word_dropout=args.word_dropout,
        embedding_dropout=args.embedding_dropout,
        latent_size=args.latent_size,
        num_layers=args.num_layers,
        bidirectional=args.bidirectional
        )

    if not os.path.exists(args.load_checkpoint):
        raise FileNotFoundError(args.load_checkpoint)

    model.load_state_dict(torch.load(args.load_checkpoint))
    print("Model loaded from %s"%(args.load_checkpoint))

    if torch.cuda.is_available():
        model = model.cuda()
    
    model.eval()

    samples, z = model.inference(n=args.num_samples)
    print('----------SAMPLES----------')
    print(*idx2word(samples, i2w=i2w, pad_idx=w2i['<pad>']), sep='\n')
    
    z1 = torch.randn([args.latent_size]).numpy()
    z2 = torch.randn([args.latent_size]).numpy()
    z = to_var(torch.from_numpy(interpolate(start=z1, end=z2, steps=8)).float())
    samples, _ = model.inference(z=z)
    print('-------INTERPOLATION-------')
    print(*idx2word(samples, i2w=i2w, pad_idx=w2i['<pad>']), sep='\n')

    print('-------Encode ... Decode-------')
    
    datasets = Amazon(
            data_dir=args.data_dir,
            split="valid",
            create_data=False,
            batch_size=10,
            max_sequence_length=args.max_sequence_length,
            min_occ=3
        )

    iteration = 0
    for input_batch_tensor, target_batch_tensor, length_batch_tensor in datasets:
        if torch.is_tensor(input_batch_tensor):
            input_batch_tensor = to_var(input_batch_tensor)

        if torch.is_tensor(target_batch_tensor):
            target_batch_tensor = to_var(target_batch_tensor)

        if torch.is_tensor(length_batch_tensor):
            length_batch_tensor = to_var(length_batch_tensor)

        print("*"*10)
        print("->"*10, *idx2word(input_batch_tensor, i2w=i2w, pad_idx=w2i['<pad>']), sep='\n')
        logp, mean, logv, z = model(input_batch_tensor,length_batch_tensor)

        
        samples, z = model.inference(z=z)
        print("<-"*10, *idx2word(samples, i2w=i2w, pad_idx=w2i['<pad>']), sep='\n')
        # print("+"*10)
        if iteration == 0:
            break

        iteration += 1
コード例 #26
0
def main():
    # === Extract options ===
    parser = OptionParser(usage="usage: %prog [options] <# of seconds to audit>")
    parser.add_option("-c", "--config", dest='configFile', default=None, help='Path to configuration file')
    parser.add_option("-g", "--gracePeriod", dest='gracePeriod', default=0, help='Number of seconds from now backwards to ignore')
    parser.add_option("-i", "--historyFile", dest='historyFile', default=None, help='Stores any pending transactions and the last run time')
    parser.add_option('-l', "--logFile", dest='logFile', default=None, help='Saves a log of all Amazon transactions')
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.print_usage()
        exit()

    startTime = datetime.fromtimestamp(int(time.time()) - int(args[0]), pytz.utc)
    endTime = datetime.fromtimestamp(int(time.time()) - int(options.gracePeriod), pytz.utc)
    print("AWS refund audit requested from %s to %s" % (startTime.isoformat(), endTime.isoformat()))

    # === Get the configuration options ===
    config = SafeConfigParser()
    fileList = ['./amazon-config.cfg']
    if options.configFile is not None:
        fileList.append(options.configFile)
    config.read(fileList)

    # === Open up ze STOMP ===
    sc = DistStomp(config.get('Stomp', 'server'), config.getint('Stomp', 'port'))
    sc.connect()

    # === Connection to Amazon ===
    aws = Amazon(
        awsEndpoint = config.get('AwsConfig', 'endpoint'),
        awsAccessKey = config.get('AwsConfig', 'accessKey'),
        awsSecret = config.get('AwsConfig', 'secretKey')
    )

    # === Connection to MySQL ===
    dbcon = MySQL.connect(
        config.get('MySQL', 'host'),
        config.get('MySQL', 'user'),
        config.get('MySQL', 'password'),
        config.get('MySQL', 'schema')
    )

    # === Open up the history and log files ===
    # If the history file exists, it will modify the start time of this script to be the end time of the
    # history file.
    hfile = None
    historyStart = startTime
    historyEnd = endTime
    if options.historyFile and os.path.exists(options.historyFile):
        hfile = open(options.historyFile, 'r')
        if hfile.readline().strip() == AWS_HISTORY_FILE_VERSTR:
            historyStart = dateutil.parser.parse(hfile.readline().strip())
            historyEnd = dateutil.parser.parse(hfile.readline().strip())
            startTime = historyEnd
            print("History file modified search period, now %s to %s" % (startTime.isoformat(), endTime.isoformat()))
    else:
        print('Not starting with a valid history file.')

    sfile = None
    if options.logFile:
        sfile = open(options.logFile, 'a')
        sfile.write("!!! Starting run for dates %s -> %s\n" % (startTime.isoformat(), endTime.isoformat()))

    # === Sanity checks ===
    if endTime < startTime:
         startTime = endTime

    # === Main Application ===
    # --- Process all previously pending transactions from the history file. If the transaction is still in some form
    #     of pending, add it back to the history list.
    historyCount = 0
    historyList = []
    historyStats = {
        'Success': 0,
        'Pending': 0,
        'Failed': 0,
        'Ignored': 0
    }
    if hfile:
        print("Processing history file")
        for txn in hfile:
            historyCount += 1
            txn = json.loads(txn)
            result = processTransaction(txn, dbcon, aws, sc, sfile, config)
            historyStats[result] += 1
            if result == 'Pending':
                historyList.append(txn)
        hfile.close()

    # --- Obtain AWS history ---
    print("Obtaining AWS transactions for the period %s -> %s" % (startTime.isoformat(), endTime.isoformat()))
    awsTransactions = aws.getAccountActivity(startTime, endDate=endTime, fpsOperation='Pay')
    print("Obtained %d transactions" % len(awsTransactions))

    # --- Main loop: checks each aws transaction against the Civi database; adding it if it doesn't exist ---
    txncount = 0
    for txn in awsTransactions:
        txncount += 1
        result = processTransaction(txn, dbcon, aws, sc, sfile, config)
        historyStats[result] += 1
        if result == 'Pending':
            historyList.append(txn)

    print("\n--- Finished processing of messages. ---\n")

    # --- Prepare the history file for write ---
    if options.historyFile:
        print("Rewriting history file with %d transactions" % len(historyList))
        hfile = open(options.historyFile, 'w')
        hfile.write("%s\n%s\n%s\n" % (AWS_HISTORY_FILE_VERSTR, historyStart.isoformat(), endTime.isoformat()))
        for txn in historyList:
            hfile.write("%s\n" % json.dumps(txn))
        print("Flushing history file in preparation for main loop")
        hfile.flush()

    # --- Final statistics ---
    print("%d new AWS messages" % txncount)
    print(" Additionally %d messages were processed from history" % historyCount)
    print("This resulted in the following:")
    for entry in historyStats.items():
        print(" %s Messages: %d" % entry)

    # === Final Application Cleanup ===
    print("\nCleaning up.")
    dbcon.close()
    sc.disconnect()

    if hfile:
        hfile.close()
    if sfile:
        sfile.close()

    time.sleep(1)   # Let the STOMP library catch up