コード例 #1
0
def test_fall_detection_2_frame_back_case_2():
    """
        Expected to detect a fall using frame[t] and frame[t-2].
        frame[t-2] : A person is in standing position.
        frame[t-1] : A person is mid-way of fall.
        frame[t]   : A person is fall down.
    """
    config = _fall_detect_config()
    result = None

    def sample_callback(image=None, inference_result=None, **kwargs):
        nonlocal result
        result = inference_result

    fall_detector = FallDetector(**config)

    output = _OutPipeElement(sample_callback=sample_callback)
    fall_detector.connect_to_next_element(output)

    # A frame at t-2 timestamp when person is in standing position.
    img_1 = _get_image(file_name='fall_img_1.png')

    # A frame at t-1 timestamp when person is mid-way of fall.
    img_2 = _get_image(file_name='fall_img_2_2.png')

    # A frame at t timestamp when person falls down.
    img_3 = _get_image(file_name='fall_img_2.png')

    fall_detector.min_time_between_frames = 0.01
    fall_detector.max_time_between_frames = 15

    fall_detector.receive_next_sample(image=img_1)
    time.sleep(fall_detector.min_time_between_frames)

    fall_detector.receive_next_sample(image=img_2)
    time.sleep(fall_detector.min_time_between_frames)

    assert not result

    fall_detector.receive_next_sample(image=img_3)

    assert result
    assert len(result) == 1

    category = result[0]['label']
    confidence = result[0]['confidence']
    angle = result[0]['leaning_angle']
    keypoint_corr = result[0]['keypoint_corr']

    assert keypoint_corr
    assert category == 'FALL'
    assert confidence > 0.7
    assert angle > 60
コード例 #2
0
def test_fall_detection_2_frame_back_case_3():
    """
    Expected to not detect a fall using frame[t],frame[t-1] and frame[t-2].
    frame[t-2] : A person is in walking postion.
    frame[t-1] : A person is in walking postion.
    frame[t]   : A person is slight in lean postion but no fall.
    """

    config = _fall_detect_config()
    result = None

    def sample_callback(image=None, inference_result=None, **kwargs):
        nonlocal result
        result = inference_result

    fall_detector = FallDetector(**config)

    output = _OutPipeElement(sample_callback=sample_callback)
    fall_detector.connect_to_next_element(output)

    # A frame at t-2 timestamp when person is in walking postion.
    img_1 = _get_image(file_name="fall_img_15.png")

    # A frame at t-1 timestamp when person is in walking postion.
    img_2 = _get_image(file_name="fall_img_16.png")

    # A frame at t timestamp when person is slight in lean postion but no fall.
    img_3 = _get_image(file_name="fall_img_17.png")

    fall_detector.min_time_between_frames = 0.01

    fall_detector.receive_next_sample(image=img_1)
    time.sleep(fall_detector.min_time_between_frames)

    fall_detector.receive_next_sample(image=img_2)
    time.sleep(fall_detector.min_time_between_frames)

    assert not result

    fall_detector.receive_next_sample(image=img_3)

    assert not result