コード例 #1
0
def test_clean(global_datadir):
    fits_file = global_datadir / "test.fits"

    clean_param = {
        "isz": 79,
        "r1": 35,
        "dr": 2,
        "apod": True,
        "window": 65,
        "f_kernel": 3,
        "add_bad": [[39, 39]],
    }

    cube_clean = amical.select_clean_data(fits_file, clip=True, **clean_param)

    amical.show_clean_params(fits_file, **clean_param)
    amical.show_clean_params(fits_file, **clean_param, remove_bad=False)

    im1 = amical.data_processing._apply_patch_ghost(
        cube_clean, 40, 40, radius=20, dx=3, dy=3, method="zero"
    )
    im2 = amical.data_processing._apply_patch_ghost(
        cube_clean, 40, 40, radius=20, dx=3, dy=3, method="bg"
    )

    assert type(cube_clean) == np.ndarray
    assert im1.shape == cube_clean.shape
    assert im2.shape == cube_clean.shape
コード例 #2
0
ファイル: example_SPHERE.py プロジェクト: stellaCL/AMICAL
file_c = os.path.join(datadir, 'HD142695_IRD_SCIENCE_DBI_LEFT_CUBE.fits')

# ----------------------------------
# Cleaning step
# ----------------------------------

clean_param = {'isz': 149,
               'r1': 70,
               'dr': 2,
               'apod': True,
               'window': 65,
               'f_kernel': 3
               }

amical.check_data_params(file_t, **clean_param)
cube_t = amical.select_clean_data(file_t, clip=True,
                                  **clean_param, display=True)

cube_c = amical.select_clean_data(file_c, clip=True,
                                  **clean_param, display=True)

#  AMI parameters (refer to the docstrings of `extract_bs` for details)
params_ami = {"peakmethod": 'fft',
              "bs_multi_tri": False,
              "maskname": "g7",
              "fw_splodge": 0.7,
              "filtname": 'K1'
              }


# # Extract raw complex observables for the target and the calibrator:
# # It's the core of the pipeline (amical/mf_pipeline/bispect.py)
コード例 #3
0
ファイル: clean.py プロジェクト: neutrinoceros/AMICAL
def perform_clean(args):
    """Clean the data with AMICAL."""
    cprint("---- AMICAL clean process ----", "cyan")

    clean_param = {
        "isz": args.isz,
        "r1": args.r1,
        "dr": args.dr,
        "apod": args.apod,
        "window": args.window,
        "f_kernel": args.kernel,
    }

    if not os.path.exists(args.datadir):
        print(
            "%s directory not found, check --datadir. AMICAL look for data only in this specified directory."
            % args.datadir)
        return 1

    l_file = sorted(glob("%s/*.fits" % args.datadir))
    if len(l_file) == 0:
        print("No fits files found in %s, check --datadir." % args.datadir)
        return 1

    if not args.all:
        filename, hdr = _select_data_file(args, process="clean")

    if args.check:
        amical.show_clean_params(filename, **clean_param)
        plt.show(block=True)
        return 0

    if not os.path.exists(args.outdir):
        os.mkdir(args.outdir)

    clean_param["clip"] = args.clip
    clean_param["sky"] = args.sky

    if args.all:
        # Clean all files in --datadir
        for f in tqdm(l_file, ncols=100, desc="# files"):
            hdr = fits.open(f)[0].header
            hdr["HIERARCH AMICAL step"] = "CLEANED"
            cube = amical.select_clean_data(f, **clean_param, display=True)
            f_clean = os.path.join(args.outdir, Path(f).stem + "_cleaned.fits")
            fits.writeto(f_clean, cube, header=hdr, overwrite=True)
    else:
        # Or clean just the specified file (in --datadir)
        hdr["HIERARCH AMICAL step"] = "CLEANED"
        now = datetime.now()
        dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
        hdr["HIERARCH AMICAL time"] = dt_string
        for k in clean_param:
            hdr["HIERARCH AMICAL params %s" % k] = clean_param[k]
        cube = amical.select_clean_data(filename, **clean_param, display=True)
        if args.plot:
            plt.show()
        f_clean = os.path.join(args.outdir,
                               Path(filename).stem + "_cleaned.fits")
        fits.writeto(f_clean, cube, header=hdr, overwrite=True)
    return 0