コード例 #1
0
    def __init__(
        self, images, descriptor, cores, forcetraining, lj_data=None, envcommand=None
    ):
        self.images = images
        self.descriptor = descriptor
        self.atom_images = self.images
        self.forcetraining = forcetraining
        self.lj = False
        if lj_data is not None:
            self.lj_energies = np.squeeze(lj_data[0])
            self.lj_forces = np.squeeze(lj_data[1])
            self.num_atoms = np.array(lj_data[2])
            self.lj = True

        if isinstance(images, str):
            extension = os.path.splitext(images)[1]
            if extension != (".traj" or ".db"):
                self.atom_images = ase.io.read(images, ":")
        self.hashed_images = hash_images(self.atom_images)
        self.parallel = {"cores": cores}
        if cores > 1:
            self.parallel = {"cores": assign_cores(cores), "envcommand": envcommand}
        print("Calculating fingerprints...")
        self.descriptor.calculate_fingerprints(
            self.hashed_images,
            parallel=self.parallel,
            calculate_derivatives=forcetraining,
        )
        print("Fingerprints Calculated!")
        self.fprange = calculate_fingerprints_range(self.descriptor, self.hashed_images)
        self.unique_atoms, self.fingerprint_dataset, self.energy_dataset, \
                self.num_of_atoms, self.sparse_fprimes, self.forces_dataset, \
                self.scalings = (
                    self.preprocess_data())
コード例 #2
0
def train_data(images, setup_only=False):
    label = 'nodeplot_test/calc'
    train_images = images

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(5, 5)),
               label=label,
               cores=1)
    loss = LossFunction(convergence={'energy_rmse': 0.02, 'force_rmse': 0.02})
    calc.model.lossfunction = loss

    if not setup_only:
        calc.train(images=train_images, )
        for image in train_images:
            print("energy =", calc.get_potential_energy(image))
            print("forces =", calc.get_forces(image))
    else:
        images = hash_images(train_images)
        calc.descriptor.calculate_fingerprints(images=images,
                                               log=calc._log,
                                               parallel={'cores': 1},
                                               calculate_derivatives=False)
        calc.model.fit(trainingimages=images,
                       descriptor=calc.descriptor,
                       log=calc._log,
                       parallel={'cores': 1},
                       only_setup=True)
        return calc
def train_data(images, setup_only=False):
    label = 'nodeplot_test/calc'
    train_images = images

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(5, 5)),
               label=label,
               cores=1)
    loss = LossFunction(convergence={'energy_rmse': 0.02,
                                     'force_rmse': 0.02})
    calc.model.lossfunction = loss

    if not setup_only:
        calc.train(images=train_images, )
        for image in train_images:
            print "energy =", calc.get_potential_energy(image)
            print "forces =", calc.get_forces(image)
    else:
        images = hash_images(train_images)
        calc.descriptor.calculate_fingerprints(images=images,
                                               log=calc.log,
                                               cores=1,
                                               calculate_derivatives=False)
        calc.model.fit(trainingimages=images,
                       descriptor=calc.descriptor,
                       log=calc.log,
                       cores=1,
                       only_setup=True)
        return calc
コード例 #4
0
def test():
    """Rotational/translational invariance."""

    for descriptor in [
            Gaussian(fortran=False),
    ]:

        # Non-rotated atomic configuration
        atoms = Atoms([
            Atom('Pt', (0., 0., 0.)),
            Atom('Pt', (0., 0., 1.)),
            Atom('Pt', (0., 2., 1.))
        ])

        images = hash_images([atoms], ordered=True)
        descriptor1 = descriptor
        descriptor1.calculate_fingerprints(images)
        fp1 = descriptor1.fingerprints[list(images.keys())[0]]

        # Randomly Rotated (and translated) atomic configuration
        rot = [random.random(), random.random(), random.random()]
        for i in range(1, len(atoms)):
            (atoms[i].x, atoms[i].y,
             atoms[i].z) = rotate_atom(atoms[i].x, atoms[i].y, atoms[i].z,
                                       rot[0] * np.pi, rot[1] * np.pi,
                                       rot[2] * np.pi)
        disp = [random.random(), random.random(), random.random()]
        for atom in atoms:
            atom.x += disp[0]
            atom.y += disp[1]
            atom.z += disp[2]

        images = hash_images([atoms], ordered=True)
        descriptor2 = descriptor
        descriptor2.calculate_fingerprints(images)
        fp2 = descriptor2.fingerprints[list(images.keys())[0]]

        for (element1, afp1), (element2, afp2) in zip(fp1, fp2):
            assert element1 == element2, 'rotated atoms test broken!'
            for _, __ in zip(afp1, afp2):
                assert (abs(_ - __) < 10 ** (-10.)), \
                    'rotated atoms test broken!'
def test():

    for descriptor in [Gaussian(fortran=False), ]:

        # Non-rotated atomic configuration
        atoms = Atoms([Atom('Pt', (0., 0., 0.)),
                       Atom('Pt', (0., 0., 1.)),
                       Atom('Pt', (0., 2., 1.))])

        images = hash_images([atoms], ordered=True)
        descriptor1 = descriptor
        descriptor1.calculate_fingerprints(images)
        fp1 = descriptor1.fingerprints[images.keys()[0]]

        # Randomly Rotated (and translated) atomic configuration
        rot = [random.random(), random.random(), random.random()]
        for i in range(1, len(atoms)):
            (atoms[i].x,
             atoms[i].y,
             atoms[i].z) = rotate_atom(atoms[i].x,
                                       atoms[i].y,
                                       atoms[i].z,
                                       rot[0] * np.pi,
                                       rot[1] * np.pi,
                                       rot[2] * np.pi)
        disp = [random.random(), random.random(), random.random()]
        for atom in atoms:
            atom.x += disp[0]
            atom.y += disp[1]
            atom.z += disp[2]

        images = hash_images([atoms], ordered=True)
        descriptor2 = descriptor
        descriptor2.calculate_fingerprints(images)
        fp2 = descriptor2.fingerprints[images.keys()[0]]

        for (element1, afp1), (element2, afp2) in zip(fp1, fp2):
            assert element1 == element2, 'rotated atoms test broken!'
            for _, __ in zip(afp1, afp2):
                assert (abs(_ - __) < 10 ** (-10.)), \
                    'rotated atoms test broken!'
コード例 #6
0
    def test_radial_G2(self):
        atoms = molecule('H2O')
        atoms.cell = 100 * np.eye(3)

        # Amp setup

        sf = {
            'H': make_symmetry_functions(['H', 'O'], 'G2', [0.05, 1.0]),
            'O': make_symmetry_functions(['H', 'O'], 'G2', [0.05, 1.0])
        }

        descriptor = Gaussian(Gs=sf)
        images = hash_images([atoms], ordered=True)
        descriptor.calculate_fingerprints(images)

        fparray = []
        for index, hash in enumerate(images.keys()):
            for fp in descriptor.fingerprints[hash]:
                fparray += [fp[1]]
        fparray = np.array(fparray)

        # This module setup
        positions = atoms.positions
        cell = atoms.cell
        atom_mask = [[1] for atom in atoms]

        numbers = list(np.unique(atoms.numbers))

        species_mask = np.stack([[atom.number == el for atom in atoms]
                                 for el in numbers],
                                axis=1).astype(int)

        config = {'cutoff_radius': 6.5}
        d, _ = get_distances(positions, cell, config['cutoff_radius'])

        g0 = G2(0, 0.05, 0.0)
        g1 = G2(1, 0.05, 0.0)
        g2 = G2(0, 1.0, 0.0)
        g3 = G2(1, 1.0, 0.0)

        # This builds the array of fingerprints
        this = np.concatenate(
            (g0(config, d, atom_mask,
                species_mask), g1(config, d, atom_mask, species_mask),
             g2(config, d, atom_mask,
                species_mask), g3(config, d, atom_mask, species_mask)),
            axis=1)

        npt.assert_almost_equal(fparray, this, 5)
コード例 #7
0
def test():
    """Zernike fingerprints consistency.

    Tests that pure-python and fortran, plus different number of cores
    give same results.
    """

    images = make_images()
    images = hash_images(images, ordered=True)

    ref_fps = {}
    ref_fp_primes = {}
    count = 0
    for fortran in [True, False]:
        for ncores in range(1, 3):
            cores = assign_cores(ncores)
            descriptor = Zernike(fortran=fortran,
                                 dblabel='Zernike-%s-%d' % (fortran, ncores))
            descriptor.calculate_fingerprints(images,
                                              parallel={
                                                  'cores': cores,
                                                  'envcommand': None
                                              },
                                              log=None,
                                              calculate_derivatives=True)
            for hash, image in images.items():
                if count == 0:
                    ref_fps[hash] = descriptor.fingerprints[hash]
                    ref_fp_primes[hash] = descriptor.fingerprintprimes[hash]
                else:
                    fps = descriptor.fingerprints[hash]
                    # Checking consistency between fingerprints
                    for (element1, afp1), \
                            (element2, afp2) in zip(ref_fps[hash], fps):
                        assert element1 == element2, \
                            'fortran-python consistency for Zernike '
                        'fingerprints broken!'
                        for _, __ in zip(afp1, afp2):
                            assert (abs(_ - __) < (10 ** (-10.))), \
                                'fortran-python consistency for Zernike '
                            'fingerprints broken!'
                    # Checking consistency between fingerprint primes
                    fpprime = descriptor.fingerprintprimes[hash]
                    for key, value in ref_fp_primes[hash].items():
                        for _, __ in zip(value, fpprime[key]):
                            assert (abs(_ - __) < (10 ** (-10.))), \
                                'fortran-python consistency for Zernike '
                            'fingerprint primes broken!'
            count += 1
def test():

    images = make_images()
    images = hash_images(images, ordered=True)

    ref_fps = {}
    ref_fp_primes = {}
    count = 0
    for fortran in [True, False]:
        for cores in range(1, 2):
            descriptor = Zernike(fortran=fortran,
                                 dblabel='Zernike-%s-%d' % (fortran, cores))
            descriptor.calculate_fingerprints(images,
                                              cores=cores,
                                              fortran=fortran,
                                              log=None,
                                              calculate_derivatives=True)
            for hash, image in images.items():
                if count == 0:
                    ref_fps[hash] = descriptor.fingerprints[hash]
                    ref_fp_primes[hash] = descriptor.fingerprintprimes[hash]
                else:
                    fps = descriptor.fingerprints[hash]
                    # Checking consistency between fingerprints
                    for (element1, afp1), \
                            (element2, afp2) in zip(ref_fps[hash], fps):
                        assert element1 == element2, \
                            'fortran-python consistency for Zernike '
                        'fingerprints broken!'
                        for _, __ in zip(afp1, afp2):
                            assert (abs(_ - __) < (10 ** (-10.))), \
                                'fortran-python consistency for Zernike '
                            'fingerprints broken!'
                    # Checking consistency between fingerprint primes
                    fpprime = descriptor.fingerprintprimes[hash]
                    for key, value in ref_fp_primes[hash].items():
                        for _, __ in zip(value, fpprime[key]):
                            assert (abs(_ - __) < (10 ** (-10.))), \
                                'fortran-python consistency for Zernike '
                            'fingerprint primes broken!'
            count += 1
コード例 #9
0
    def __init__(self,
                 images,
                 descriptor,
                 calc=None,
                 charge=None,
                 Ei=None,
                 Alpha=None,
                 Jii=None):

        images = Trajectory(images)
        self.images = hash_images(images)
        self.descriptor = descriptor
        self.calc = calc
        self.charge = charge
        self.Ei = Ei
        self.Alpha = Alpha
        self.Jii = Jii

        if self.charge is None:
            self.training = True
        else:
            self.training = False
コード例 #10
0
ファイル: fingerprint.py プロジェクト: haoxy97/I-ReaxFF
    nn1_ = nn1.copy()
    nn1_.rotate([0, 0, 1], ang1)

    nn2_ = nn2.copy()
    nn2_.rotate([0, 0, 1], ang2)
    nn2_.positions = nn2_.positions + np.array([3.0, 0.0, 0.0])

    for atom in nn2_:
        nn1_.append(atom)
    images.append(nn1_)

view(images)

# # Fingerprint using Amp.
descriptor = Gaussian()
images = hash_images(images, ordered=True)
descriptor.calculate_fingerprints(images)


def barplot(hash, name, title):
    """Makes a barplot of the fingerprint about the O atom."""
    fp = descriptor.fingerprints[hash][0]
    fig, ax = pyplot.subplots()
    ax.bar(range(len(fp[1])), fp[1])
    ax.set_title(title)
    ax.set_ylim(0., 2.)
    ax.set_xlabel('fingerprint')
    ax.set_ylabel('value')
    fig.savefig(name)

コード例 #11
0
    def calculate_numerical_forces(self, atoms, d=0.001, parallel=True):
        """Calculate numerical forces using finite difference.
        All atoms will be displaced by +d and -d in all directions."""

        if (str(self.__class__) == "<class 'amp.Amp'>"):
            if (str(self.model.__class__) ==
                    "<class 'amp.model.tflow.NeuralNetwork'>"):
                disp_atoms = self.generate_disp(atoms, d=d)
                atomic_energies = self.calculateE_bunch(disp_atoms,
                                                        parallel=parallel)
                atomic_energies = np.array(
                    np.split(
                        np.array(np.split(atomic_energies,
                                          len(atoms) * 3)), len(atoms)))
                forces = np.zeros((len(atoms), 3))
                for i in range(len(atoms)):
                    for j in range(3):
                        forces [i][j] = \
                            -1 * ( atomic_energies[i][j][1] - atomic_energies[i][j][0] ) / (2 * d)
                return forces
            else:
                Calculator.calculate(self, atoms)
                disp_atoms = self.generate_disp(atoms, d=d)
                log = self._log
                log('Calculation requested.')

                from amp.utilities import hash_images
                images, seq_keys = hash_images(disp_atoms, list_seq=True)
                keys = list(images.keys())[0]

                ############### load neighborlist file list most recently used
                if hasattr(self, "neighborlist_keys"):
                    n_keys = self.neighborlist_keys
                else:
                    n_keys = None
                if hasattr(self, "fingerprints_keys"):
                    f_keys = self.fingerprints_keys
                else:
                    f_keys = None
                ############# update neighborlists & fingerprints file lists
                self.neighborlist_keys, self.fingerprints_keys = \
                    self.descriptor.calculate_fingerprints(
                        images=images,
                        log=log,
                        calculate_derivatives=False,
                        neighborlist_keys = n_keys,
                        fingerprints_keys = f_keys,
                        parallel = self._parallel if parallel else None,
                        )
                log('Calculating potential energy...', tic='pot-energy')
                seq_keys = np.array(
                    np.split(
                        np.array(np.split(np.array(seq_keys),
                                          len(atoms) * 3)), len(atoms)))
                forces = np.zeros((len(atoms), 3))
                for a in range(len(atoms)):
                    for i in range(3):
                        eplus = self.model.calculate_energy(
                            self.descriptor.fingerprints[seq_keys[a][i][1]])
                        self.descriptor.fingerprints.close()
                        eminus = self.model.calculate_energy(
                            self.descriptor.fingerprints[seq_keys[a][i][0]])
                        self.descriptor.fingerprints.close()
                        forces[a][i] = (eminus - eplus) / (2 * d)
                log('Potential energy calc ended...', toc='pot-energy')
                return forces

        else:
            return np.array(
                [[self.numeric_force(atoms, a, i, d) for i in range(3)]
                 for a in range(len(atoms))])