コード例 #1
0
def get_inline_variables(signals: [api.Signal], include_wt: bool) -> {}:
    variables = {}
    for signal in signals:
        if (signal.value_type == 'Numeric'):
            variable = api.NumericVariable(
                kind="numeric",
                # https://docs.microsoft.com/en-us/rest/api/time-series-insights/reference-time-series-expression-syntax#other-functions
                value=api.Tsx(
                    tsx=
                    f'coalesce($event.{signal._property}.Double, toDouble($event.{signal._property}.Long))'
                ),
                aggregation=api.Tsx(tsx="it doesn't matter"))
            variables[signal._property] = variable
        else:
            logger.info(
                f'Not adding signal {signal._property} with value type {signal.value_type}'
            )
    if include_wt:
        variables["wt"] = variable = api.NumericVariable(
            kind="numeric",
            value=api.Tsx(tsx='$event.wt'),
            aggregation=api.Tsx(tsx="avg($value)"))
    return variables
コード例 #2
0
try:
    amphora_api = a10a.AmphoraeApi(client.apiClient)
    print(f'Getting signals for: {amphora_api.amphorae_read(id).name}')
    signals = amphora_api.amphorae_signals_get_signals(id)
    properties = list((s._property for s in signals))

    ts_api = a10a.TimeSeriesApi(
        client.apiClient)  # the API for interacting with time series
    tomorrow = datetime.now() + timedelta(hours=24)
    # Create a DateTimeRange to describe over what period we want data.
    time_range = a10a.DateTimeRange(_from=datetime.now(), to=tomorrow)
    # Create a variable object for getting temperature data
    temperatureVariable = a10a.NumericVariable(
        kind="numeric",
        value=a10a.Tsx(tsx="$event.temperature"),
        aggregation=a10a.Tsx(tsx="it doesn't matter"))
    get_series = a10a.GetSeries(
        [id],
        search_span=time_range,
        inline_variables={"temperature": temperatureVariable})
    time_series_data = ts_api.time_series_query_time_series(
        a10a.QueryRequest(get_series=get_series))

    print(
        f'Got {len(time_series_data.timestamps)} datapoints and {len(time_series_data.properties)} properties'
    )
    # access the data in time_series_data.properties
    print("-----------")

    # get average of tomorrow's rainfall probablility, filtered by description = Possible shower or Mostly cloudy
コード例 #3
0
    amphora_api = a10a.AmphoraeApi(client.apiClient)
    print(f'Getting signals for: {amphora_api.amphorae_read(id).name}')
    print("-----------")
    signals = amphora_api.amphorae_signals_get_signals(id)
    properties = list((s._property for s in signals))

    ts_api = a10a.TimeSeriesApi(
        client.apiClient)  # the API for interacting with time series
    one_hour_ago = datetime.utcnow() + timedelta(hours=-1)
    # Create a DateTimeRange to describe over what period we want data.
    time_range = a10a.DateTimeRange(_from=one_hour_ago, to=datetime.utcnow())

    # let's get the maximum write time for the period
    maxWtVar = a10a.AggregateVariable(kind="aggregate",
                                      aggregation=a10a.Tsx("max($event.wt)"))
    minWtVar = a10a.AggregateVariable(kind="aggregate",
                                      aggregation=a10a.Tsx("min($event.wt)"))
    get_aggregate = a10a.AggregateSeries(
        [id],
        search_span=time_range,
        interval="PT4H",
        projected_variables=["maxWt", "minWt"],
        inline_variables={
            "maxWt": maxWtVar,
            "minWt": minWtVar
        })
    agg_data = ts_api.time_series_query_time_series(
        a10a.QueryRequest(aggregate_series=get_aggregate))

    maxWt = max(agg_data.properties[0].values)  # max value from max list
コード例 #4
0

importCsv("dates_of_interest.csv")

amphora_id = 'fca8998a-2d0e-4afa-a9aa-1467759a8d9a'

T = 60

## Get the data
ts_api = a10a.TimeSeriesApi(client.apiClient)
time_range = a10a.DateTimeRange(_from=datetime.utcnow() + timedelta(days=-T),
                                to=datetime.utcnow())
variables = {
    "confirmedCases":
    a10a.NumericVariable(kind="numeric",
                         value=a10a.Tsx(tsx="$event.confirmedCases"),
                         aggregation=a10a.Tsx(tsx="it doesn't matter")),
    "activeCases":
    a10a.NumericVariable(kind="numeric",
                         value=a10a.Tsx(tsx="$event.activeCases"),
                         aggregation=a10a.Tsx(tsx="it doesn't matter")),
    "recoveredCases":
    a10a.NumericVariable(kind="numeric",
                         value=a10a.Tsx(tsx="$event.recoveredCases"),
                         aggregation=a10a.Tsx(tsx="it doesn't matter")),
    "deaths":
    a10a.NumericVariable(kind="numeric",
                         value=a10a.Tsx(tsx="$event.deaths"),
                         aggregation=a10a.Tsx(tsx="it doesn't matter"))
}
コード例 #5
0
                                labels=labels)
amphora_id = amphora.amphora_id
amphora_api = a10a.AmphoraeApi(client.apiClient)
T = 25
for i in range(len(country_stor)):
    sep = ""
    # Pull beta signal
    ## Get the data
    ts_api = a10a.TimeSeriesApi(client.apiClient)
    time_range = a10a.DateTimeRange(_from=datetime.utcnow() +
                                    timedelta(days=-T),
                                    to=datetime.utcnow() + timedelta(days=-5))
    variables = {
        "beta":
        a10a.NumericVariable(kind="numeric",
                             value=a10a.Tsx(tsx="$event.beta"),
                             aggregation=a10a.Tsx(tsx="it doesn't matter"))
    }

    get_series_query = a10a.GetSeries(
        [country_stor[i][0]],
        search_span=time_range,
        inline_variables=variables)  # the complete query
    time_series_data = ts_api.time_series_query_time_series(
        a10a.QueryRequest(get_series=get_series_query))

    data_array, unique_dt, data_name = flatten_time_series_data(
        time_series_data)
    unique_dt_list = list(unique_dt)
    beta = data_array[0]