コード例 #1
0
        save_out  = output
        netD.zero_grad()

        errD_real = criterion(output, labelv)
        errD_real.backward()
        D_x = errD_real.data.mean()
        optimizerD.step()
        # train with fake
        if cv2.waitKey(12) & 0xFF == ord('q'):
              break 
         
        print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
              % (epoch, 0, read_id, 0,
                 errD_real.data, D_x, 0, 0, 0))
        if Visdom_flag == True:
                plotter.plot( 'LOSS', 'LOSS', 'LOSS', iteration_num, D_x.cpu().detach().numpy())
        if read_id % 2 == 0:
            #vutils.save_image(real_cpu,
            #        '%s/real_samples.png' % opt.outf,
            #        normalize=True)
            #netG.eval()
            #fake = netG(fixed_noise)
            #cv2.imwrite(Save_pic_dir  + str(i) +".jpg", mat)
            #show the result

            dispay_id =0
            Matrix  =   mydata_loader.input_mat[dispay_id,0,:,:] +104
            show1 = Matrix*0
            path2 = (mydata_loader.input_path[dispay_id,:])*Original_window_Len
             
            show1[int(path2[0]),:]=254
コード例 #2
0
        #optimizerG.step()

        #save_out  = Fake
        # train with fake
        # if cv2.waitKey(12) & 0xFF == ord('q'):
        #       break 
        print (" all test point time is [%f] " % ( test_time_point - start_time))

        if validation_flag==False:
            print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
                  % (epoch, 0, read_id, 0,
                     G_x, D_x, 0, 0, 0))

        if read_id % 2 == 0 and Visdom_flag == True and validation_flag==False:
                plotter.plot( 'DLOSS', 'DLOSS', 'DLOSS', iteration_num, D_x.cpu().detach().numpy())
                plotter.plot( 'GLOSS', 'GLOSS', 'GLOSS', iteration_num, G_x.cpu().detach().numpy())
                plotter.plot( 'GlLOSS', 'GlLOSS', 'GlLOSS', iteration_num, G_x_L12.cpu().detach().numpy())

                #plotter.plot( 'cLOSS1', 'cLOSS1', 'cLOSS1', iteration_num, D_x1.cpu().detach().numpy())
                #plotter.plot( 'cLOSS12', 'cLOSS2', 'cLOSS2', iteration_num, D_x2.cpu().detach().numpy())
                #plotter.plot( 'cLOSS_f', 'cLOSSf', 'cLOSSf', iteration_num, D_xf.cpu().detach().numpy())
        if read_id % 1 == 0 and Display_fig_flag== True:
            #vutils.save_image(real_cpu,
            #        '%s/real_samples.png' % opt.outf,
            #        normalize=True)
            #netG.eval()
            #fake = netG(fixed_noise)
            #cv2.imwrite(Save_pic_dir  + str(i) +".jpg", mat)
            #show the result
コード例 #3
0
        D_xf = errD_real_fuse.data.mean()


        optimizerD.step()

        save_out  = output2

        # train with fake
        # if cv2.waitKey(12) & 0xFF == ord('q'):
        #       break 
         
        print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
              % (epoch, 0, read_id, 0,
                 errD_real.data, D_x, 0, 0, 0))
        if read_id % 20 == 0 and Visdom_flag == True:
                plotter.plot( 'cLOSS', 'cLOSS', 'cLOSS', iteration_num, D_x.cpu().detach().numpy())
                plotter.plot( 'cLOSS1', 'cLOSS1', 'cLOSS1', iteration_num, D_x1.cpu().detach().numpy())
                plotter.plot( 'cLOSS12', 'cLOSS2', 'cLOSS2', iteration_num, D_x2.cpu().detach().numpy())
                plotter.plot( 'cLOSS_f', 'cLOSSf', 'cLOSSf', iteration_num, D_xf.cpu().detach().numpy())
        if read_id % 1 == 0 and Display_fig_flag== True:
            #vutils.save_image(real_cpu,
            #        '%s/real_samples.png' % opt.outf,
            #        normalize=True)
            #netG.eval()
            #fake = netG(fixed_noise)
            #cv2.imwrite(Save_pic_dir  + str(i) +".jpg", mat)
            #show the result


            gray2  =   (mydata_loader.input_image[0,0,:,:] *104)+104
            show1 = gray2.astype(float)
コード例 #4
0

        #optimizerG.step()

        #save_out  = Fake
        # train with fake
        # if cv2.waitKey(12) & 0xFF == ord('q'):
        #       break 

        if validation_flag==False:
            print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
                  % (epoch, 0, read_id, 0,
                     G_x, D_x, 0, 0, 0))

        if read_id % 2 == 0 and Visdom_flag == True and validation_flag==False:
                plotter.plot( 'l0', 'l0', 'l0', iteration_num, GANmodel.displayloss0.cpu().detach().numpy())

                plotter.plot( 'l1', 'l1', 'l1', iteration_num, GANmodel.displayloss1.cpu().detach().numpy())
                plotter.plot( 'l2', 'l2', 'l2', iteration_num, GANmodel.displayloss2.cpu().detach().numpy())
                plotter.plot( 'l3', 'l3', 'l3', iteration_num, GANmodel.displayloss3.cpu().detach().numpy())

                #plotter.plot( 'cLOSS1', 'cLOSS1', 'cLOSS1', iteration_num, D_x1.cpu().detach().numpy())
                #plotter.plot( 'cLOSS12', 'cLOSS2', 'cLOSS2', iteration_num, D_x2.cpu().detach().numpy())
                #plotter.plot( 'cLOSS_f', 'cLOSSf', 'cLOSSf', iteration_num, D_xf.cpu().detach().numpy())
        if read_id % 1 == 0 and Display_fig_flag== True:
            #vutils.save_image(real_cpu,
            #        '%s/real_samples.png' % opt.outf,
            #        normalize=True)
            #netG.eval()
            #fake = netG(fixed_noise)
            #cv2.imwrite(Save_pic_dir  + str(i) +".jpg", mat)