コード例 #1
0
def fit_rabi_with_phase_on_linslope(g_f, g_A, g_a, g_b, g_phi, *arg):
    """
    fits (and plots) a cosine on a slope, with offset,
        y(x) = a + bx + Acos(f*x + phi)

    Initial guesses (1st args, in this order):
        g_f : float
            guess for the frequency
        g_A : float
            guess for amplitude
        g_a : float
            guess for offset
        g_b = 0. : float
            guess for slope
        g_phi = 0. : float
            guess for the phase
    """
    fitfunc_str = "a + b*x + A*cos(2pi*f*x + phi)"

    f = fit.Parameter(g_f, 'frequency')
    A = fit.Parameter(g_A, 'amplitude')
    a = fit.Parameter(g_a, 'offset')
    b = fit.Parameter(g_b, 'slope')
    phi = fit.Parameter(g_phi, 'phase')
    p0 = [f, A, a, b, phi]

    def fitfunc(x):
        return a() + b() * x + A() * cos(2 * pi * f() * x + phi())

    return p0, fitfunc, fitfunc_str
コード例 #2
0
def fit_rabi_simple(g_f, g_A, g_a, g_phi, *arg):
    """
    fits a cosine thats damped exponentially,
        y(x) = a + A * cos(2pi*f*x)

    Initial guesses, in this order:
        g_f : frequency
        g_A : initial amplitude of the oscillation
        g_a : offset


    """
    fitfunc_str = "a + A * cos(f*x + phi)"

    f = fit.Parameter(g_f, 'f')
    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    phi = fit.Parameter(g_phi, 'phi')
    # tau = fit.Parameter(g_tau, 'tau')
    p0 = [f, A, a, phi]

    def fitfunc(x):
        return a() + A() * cos(2 * pi * (f() * x + phi() / 360.))

    return p0, fitfunc, fitfunc_str
コード例 #3
0
def fit_rabi_damped_exp(g_f, g_A, g_a, g_tau, *arg):
    """
    fits a cosine thats damped exponentially,
        y(x) = a + A * exp(-x/tau) * cos(f*x + phi)

    Initial guesses, in this order:
        g_f : frequency
        g_A : initial amplitude of the oscillation
        g_a : offset
        ### g_phi : phase
        g_tau : decay constant

    """
    fitfunc_str = "a + A * exp(-x/tau) * cos(f*x + phi)"

    f = fit.Parameter(g_f, 'f')
    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    phi = fit.Parameter(0., 'phi')
    tau = fit.Parameter(g_tau, 'tau')
    p0 = [f, A, a, tau, phi]

    #print tau
    def fitfunc(x):
        return a() + A() * exp(-x / tau()) * cos(2 * pi *
                                                 (f() * x + phi() / 360.))

    return p0, fitfunc, fitfunc_str
コード例 #4
0
def fit_AOM_powerdependence(g_a, g_xc, g_k, *arg):
    fitfunc_str = 'a * exp(-exp(-k*(x-xc)))'

    a = fit.Parameter(g_a, 'a')
    xc = fit.Parameter(g_xc, 'xc')
    k = fit.Parameter(g_k, 'k')

    p0 = [a, xc, k]

    def fitfunc(x):
        return a() * np.exp(-np.exp(-k() * (x - xc())))

    return p0, fitfunc, fitfunc_str
コード例 #5
0
def fit_ramsey_gaussian_decay(g_tau, g_a, *arg):
    """
    fitfunction for a ramsey modulation, with gaussian decay,
        y(x) = a + A*exp(-(x/tau)**2) * mod,

        where:
        mod = sum_i(cos(2pi*f_i*x + phi_i) - 1)

    Initial guesses (in this order):
        g_tau : decay const
        g_A : Amplitude
        g_a : offset

        For the modulation:
        an arbitrary no of tuples, in the form
        (g_f, g_A, g_phi)[i] = (frequency, Amplitude, phase)[i]
    """
    fitfunc_str = 'y(x) = a + exp(-(x/tau)**2)*('
    no_frqs = len(arg)
    if no_frqs == 0:
        print 'no modulation frqs supplied'
        return False
    
    tau = fit.Parameter(g_tau, 'tau')
    # A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    p0 = [tau, a]

    print 'fitting with %d modulation frequencies' % no_frqs

    frqs = []
    amplitudes = []
    phases = []
    for i, m in enumerate(arg):
        fitfunc_str += 'A%d*cos(2pi*f%d*x + phi%d) + ' % (i, i, i)
        frqs.append(fit.Parameter(m[0], 'f%d'%i))
        phases.append(fit.Parameter(m[2], 'phi%d'%i))
        amplitudes.append(fit.Parameter(m[1], 'A%d'%i))
        p0.append(frqs[i])
        p0.append(amplitudes[i])
        p0.append(phases[i])
    fitfunc_str += ')'

    def fitfunc(x):
        prd = exp(-(x/tau())**2)
        mod = 0
        for i in range(no_frqs):
            mod += amplitudes[i]() * (cos(2*pi*frqs[i]()*x + phases[i]()))
        return a() + prd*mod

    return p0, fitfunc, fitfunc_str
コード例 #6
0
def fit_cos(g_f, g_a, g_A, g_phi, *arg):
    fitfunc_str = 'A * cos(2pi * (f*x + phi/360) ) + a'

    f = fit.Parameter(g_f, 'f')
    a = fit.Parameter(g_a, 'a')
    A = fit.Parameter(g_A, 'A')
    # phi = fit.Parameter(g_phi, 'phi')

    p0 = [f, a, A]  #, phi]

    def fitfunc(x):
        return a() + A() * np.cos(2 * np.pi * (f() * x + 0))  #phi()/360.))

    return p0, fitfunc, fitfunc_str
コード例 #7
0
def fit_gauss(g_a, g_A, g_x0, g_sigma):
    fitfunc_str = 'a + A * exp(-(x-x0)**2/sigma**2)'

    a = fit.Parameter(g_a, 'a')
    x0 = fit.Parameter(g_x0, 'x0')
    A = fit.Parameter(g_A, 'A')
    sigma = fit.Parameter(g_sigma, 'sigma')

    p0 = [a, x0, A, sigma]

    def fitfunc(x):
        return a() + A() * np.exp(-(x - x0())**2 / sigma()**2)

    return p0, fitfunc, fitfunc_str
コード例 #8
0
def fit_population_vs_detuning(g_a, g_A, g_F, g_x0, *arg):
    fitfunc_str = 'a + A * F**2/(F**2+(x-x0)**2) * sin(pi/(2F) * sqrt(F**2+(x-x0)**2))**2'

    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    F = fit.Parameter(g_F, 'F')
    x0 = fit.Parameter(g_x0, 'x0')
    p0 = [a, A, F, x0]

    def fitfunc(x):
        return a() + A() * F()**2 / (F()**2 + (x - x0())**2) * sin(
            pi / F() / 2. * sqrt(F()**2 + (x - x0())**2))**2

    return p0, fitfunc, fitfunc_str
コード例 #9
0
def fit_rabi_multiple_detunings(g_A, g_a, g_F, g_tau, *arg):
    """
    fitfunction for an oscillation that drives several transitions
    (several nuclear lines, for instance)

        y(x) = a + A * sum_I[ F**2/(F**2 + delta_i**2) * 
            (cos(sqrt(F**2 + delta_i**2 + phi_i)) - 1) * exp(-x/tau)

    Initial guesses:
        g_A : full Rabi amplitude
        g_a : offset
        g_F : Rabi frequency
        g_tau : exp decay constant


    For the driven levels:
        all successive args are treated as detunings for additional 
            levels, (delta_i, g_phi_i) -- given as tuples!
            detuning is not a free param, but is given exactly.

    """

    fitfunc_str = "a + A * sum_I[ F**2/(F**2 + delta_i**2) * (cos(sqrt(F**2 + delta_i**2 + phi_i)) - 1) * exp(-x/tau)"

    no_detunings = len(arg)

    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    F = fit.Parameter(g_F, 'F')
    tau = fit.Parameter(g_tau, 'tau')
    p0 = [A, a, F, tau]

    detunings = []
    phases = []
    for i, d in enumerate(arg):
        fitfunc_str += '\ndetuning d%d := %f' % (i, d[0])
        detunings.append(d[0])
        #phases.append(fit.Parameter(d[1], 'phi%d'%i))
        #p0.append(phases[i])

    def fitfunc(x):
        val = a()
        for i, d in enumerate(detunings):
            f2 = F()**2 + d**2
            val += A() * (F()**2 / f2) * (cos(2 * pi * sqrt(f2) * x + 0.) - 1)

        return val * exp(-x / tau())

    return p0, fitfunc, fitfunc_str
コード例 #10
0
def fit_FID_gauss(g_tau, g_A, g_a, *arg):
    """
    fitfunction for a gaussian decay,
        y(x) = a + A*exp(-(x/tau)**2)

    Initial guesses (in this order):
        g_tau : decay constant
        g_A : amplitude
        g_a : offset
    """
    
    tau = fit.Parameter(g_tau, 'tau')
    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    p0 = [tau, A, a]
    def fitfunc(x): return a() + A()*exp(-(x/tau())**2)
    return p0, fitfunc, fitfunc_str
コード例 #11
0
def fit_saturation(g_A, g_xsat, *arg):
    """
    fitfunction for a saturation (e.g., the NV PL)
        y(x) = A * x / (x + xsat)

    I.g.:
        g_A : maximum signal (at x=infinity)
        g_xsat : saturation point
    """

    fitfunc_str = 'A * x / (x + x_sat)'

    A = fit.Parameter(g_A, 'A')
    xsat = fit.Parameter(g_xsat, 'xsat')
    p0 = [A, xsat]

    def fitfunc(x):
        return A() * x / (x + xsat())

    return p0, fitfunc, fitfunc_str
コード例 #12
0
def fit_echo(g_tau, g_A, g_a, g_k, *arg):
    """
    fitfunction for a gaussian decay,
        y(x) = a + A*exp(-(x/tau)**k)

    Initial guesses (in this order):
        g_tau : decay constant
        g_A : amplitude
        g_a : offset
        g_k : exponent
    """
    fitfunc_str='a() + A()*exp(-(x/tau))**k)'
    tau = fit.Parameter(g_tau, 'tau')
    A = fit.Parameter(g_A, 'A')
    a = fit.Parameter(g_a, 'a')
    k = fit.Parameter(g_k,'k')
    p0 = [tau, A, a,k]
    def fitfunc(x): return a() + A()*exp(-(x/tau())**k())

    return p0, fitfunc, fitfunc_str
コード例 #13
0
def fit_rabi_damped_exp_on_linslope(g_f, g_A, g_a, g_b, g_phi, g_tau, *arg):
    """
    fits (and plots) a cosine on a slope, with offset,
        y(x) = a + bx + Acos(f*x + phi) * exp(-x/tau)

    Initial guesses (1st args, in this order):
        g_f : float
            guess for the frequency
        g_A : float
            guess for amplitude
        g_a : float
            guess for offset
        g_b : float
            guess for slope
        g_phi : float
            guess for the phase
        g_tau : float
            decay constant
    """
    fitfunc_str = "a + b*x + A*cos(2pi*f*x + phi) * exp(-x/tau)"

    f = fit.Parameter(g_f, 'frequency')
    A = fit.Parameter(g_A, 'amplitude')
    a = fit.Parameter(g_a, 'offset')
    b = fit.Parameter(g_b, 'slope')
    phi = fit.Parameter(g_phi, 'phase')
    tau = fit.Parameter(g_tau, 'tau')
    p0 = [f, A, a, b, phi, tau]

    def fitfunc(x):
        return a() + b() * x + A() * cos(2 * pi * f() * x + phi()) * exp(
            -x / tau())

    return p0, fitfunc, fitfunc_str
コード例 #14
0
def fit_exp_decay_with_offset(g_a, g_A, g_tau, *arg):
    """
    fitfunction for an exponential decay,
        y(x) = A * exp(-x/tau) + a

    Initial guesses (in this order):
        g_a : offset
        g_A : initial Amplitude
        g_tau : decay constant

    """
    fitfunc_str = 'A * exp(-x/tau) + a'

    a = fit.Parameter(g_a, 'a')
    A = fit.Parameter(g_A, 'A')
    tau = fit.Parameter(g_tau, 'tau')
    p0 = [a, A, tau]

    def fitfunc(x):
        return a() + A() * np.exp(-x / tau())

    return p0, fitfunc, fitfunc_str
コード例 #15
0
def fit_poly(indices, *arg):
    fitfunc_str = 'sum_n ( a[n] * x[n] )'

    idx = 0
    p0 = []
    for i, a in enumerate(indices):
        p0.append(fit.Parameter(a, 'a%d' % i))

    def fitfunc(x):
        val = 0
        for i in range(len(indices)):
            val += p0[i]() * x**i
        return val

    return p0, fitfunc, fitfunc_str
コード例 #16
0
def fit_saturation_with_offset_linslope(g_a, g_b, g_A, g_xsat, *arg):
    """
    fitfunction for a saturation (e.g., the NV PL)
        y(x) = a + b*x + A * x / (x + xsat)

    I.g.:
        g_a : offset
        g_b : linear slope
        g_A : maximum signal (at x=infinity)
        g_xsat : saturation point
    """

    fitfunc_str = 'a + b*x + A * x / (x + x_sat)'

    a = fit.Parameter(g_a, 'a')
    b = fit.Parameter(g_b, 'b')
    A = fit.Parameter(g_A, 'A')
    xsat = fit.Parameter(g_xsat, 'xsat')
    p0 = [a, b, A, xsat]

    def fitfunc(x):
        return a() + b() * x + A() * x / (x + xsat())

    return p0, fitfunc, fitfunc_str
コード例 #17
0
def fit_ESR_gauss(g_a, g_A, g_sigma, g_x0, *arg):
    """
    fitfunction for gaussian esr dips,
        y(x) = a - A*sum_i(exp(-((x-x0_i)/sigma)**2))

    Initial guesses (in this order):
        g_a : offset
        g_A : dip depth (all the same)
        g_sigma : std dev of the dip width (all the same)
        g_x0 : zero-point of the esr pattern
    
    For the splittings:
        an arbitrary amount of splits, in the form
        (m, g_s) : where m=multiplicity, g_s=initial guess for the
        splitting of two neighboring dips

    Example:
        giving (2, 2e3), (3, 2e3), would describe two splittings,
        e.g., the two-fold one for the zeeman splitting of the +/-1
        manifolds, and on top of that the 3-fold splitting of the N14.
        This results in 6 peaks in total, where 4 of them appear,
        because of the equal splitting in the two cases, on top
        of each other, yielding 2 low, and two deep dips.
    """
    fitfunc_str = 'a - A*sum_i(exp(-((x-x0_i)/sigma)**2))'
    
    no_splits = len(arg)

    a = fit.Parameter(g_a, 'a')
    A = fit.Parameter(g_A, 'A')
    sigma = fit.Parameter(g_sigma, 'sigma')
    x0 = fit.Parameter(g_x0, 'x0')
    p0 = [a, A, sigma, x0]

    print 'fitting with %d splittings' % no_splits

    splits = []
    for i, s in enumerate(arg):
        fitfunc_str += '\nsplitting s%d with multiplicity %d' % (i, s[0])
        splits.append(fit.Parameter(s[1], 's%d'%i))
        p0.append(splits[i])

    # remove the fixed params from the p0 array
    # fixedp = []
    # for i,p in enumerate(p0):
    #     if i in fixedsplits:
    #         fixedp.append(p)
    # for p in fixedp:
    #     p0.remove(p)
    
  
    def fitfunc(x):
        pts = [x0()]
        pts_next = []
        
        # generate the points where the dips sit for the current param
        # values
        for i in range(no_splits):
            m = arg[i][0]
            s = arg[i][1]
            for pt in pts:
                j = 0
                while j < m:
                    split = splits[i]()
                    pts_next.append(pt-split*(m-1.)/2. + j*split)
                    j+=1

            pts = pts_next
            pts_next = []

        depth = 0.
        for p in pts:
            depth += A() * exp(-((x-p)/sigma())**2)

        return a() - depth

    return p0, fitfunc, fitfunc_str
コード例 #18
0
#V_EOM[n_steps+1,0] = 0
#measured_power[n_steps+1,0] = powermeter.get_power()
#data.add_data_point(V_EOM[n_steps+1,0],measured_power[n_steps+1,0])

AWG.set_ch4_offset(0)  #set EOM channel to back to 0 to avoid drift
AWG.set_ch4_marker1_low(0)  #set AOM voltage back to zero again
data.close_file()

# the fitting procedure applies only if fit_calibration_curve is flagged above!

if fit_calibration_curve:

    def num2str(num, precision):
        return "%0.*f" % (precision, num)

    A = fit.Parameter(max(measured_power - BG) / 2)
    B = fit.Parameter(max(measured_power - BG) / 2)
    f = fit.Parameter(1 / 2.5)
    phi = fit.Parameter(0)

    def fit_cos(x):
        return A() + B() * cos(2 * pi * f() * x + phi())

    ret = fit.fit1d(V_EOM.reshape(-1),
                    measured_power.reshape(-1) - BG,
                    None,
                    fitfunc=fit_cos,
                    p0=[A, B, f, phi],
                    do_plot=True,
                    do_print=True,
                    ret=True)