コード例 #1
0
print("Reclassifying data...")
# Remap the raw values to priorities and categories
table = read_dataframe(
    src_dir / "NaturesNetwork_conservdesign_180625.tif.vat.dbf",
    columns=["Value", "Priority", "Descrpt"],
    read_geometry=False,
)
table = table.loc[table.Value > 0].copy()
table.Priority = table.Priority.astype("uint8")
table["category"] = table.Descrpt.str[0].astype("uint8")

remap_table = table[["Value", "Priority"]].values.astype("uint8")
priority_data = remap(data, remap_table, nodata=nodata)

write_raster(outfilename, priority_data, transform, DATA_CRS, nodata=nodata)

print("Adding overviews and masks...")
add_overviews(outfilename)

create_lowres_mask(
    outfilename,
    str(outfilename).replace(".tif", "_mask.tif"),
    factor=MASK_FACTOR,
    ignore_zero=False,
)

### Process indicators

# Extract cores from the categories
table["aquatic_cores"] = table.Descrpt.str.contains("Aquatic")
コード例 #2
0
print("Reclassifying TNC data...")
table = read_dataframe(
    src_dir / "Resilient_and_Connected20180308.tif.vat.dbf",
    read_geometry=False,
    columns=["Value"],
)

for i, row in table.iterrows():
    if i == row.Value:
        continue

    data[data == row.Value] = i

write_raster(tnc_outfilename,
             data,
             transform=transform,
             crs=DATA_CRS,
             nodata=255)

# Reclassify to merge with below
print("Reclassifying TNC data for merge...")
# map TNC values to merged NatureScape / TNC values
tnc_values = {
    # 0:0, # noop
    2: 4,
    3: 0,
    # 4: 4, # noop
    11: 4,
    12: 2,
    13: 4,
    14: 4,
コード例 #3
0
        # if masks are all false for this window, we can skip this step
        if not np.asarray(masks).sum():
            continue

        # stack mask bits and layer_bits along inner dimension so that we have a shape of
        # (height, width, total_bits)
        data_bits = np.dstack(masks + layer_bits)

        # packbits must be in little order to read the whole array properly in JS
        packed = np.squeeze(np.packbits(data_bits, axis=-1, bitorder="little"))

        window_shape = (window.height, window.width)

        # fill remaining bytes up to dtype bytes
        fill = np.zeros(shape=window_shape, dtype="uint8")

        encoded = np.dstack([packed] + ([fill] * (num_bytes - packed.shape[-1])))
        out[window.toslices()] = encoded.view(dtype).reshape(window_shape)

    # determine the window where data are available, and write out a smaller output
    print("Calculating data window...")
    data_window = get_data_window(out, nodata=0)
    out = out[data_window.toslices()]
    transform = blueprint.window_transform(data_window)

    print("Writing GeoTIFF...")
    outfilename = out_dir / f"indicators_{i}.tif"
    write_raster(outfilename, out, transform=transform, crs=blueprint.crs, nodata=0)

    add_overviews(outfilename)
コード例 #4
0
print("Extracting Florida inland input area mask...")
mask, transform, window = get_input_area_mask("fl")

### Extract FL Blueprint
print("Reading and warping Florida Blueprint...")
with rasterio.open(src_dir / "HubsData&Blueprint/Blueprint_V_1_3.tif") as src:
    nodata = int(src.nodata)
    data = extract_window(src, window, transform, nodata=nodata)

# fill with 0 where not 1 or 2
data[data == nodata] = 0

# apply mask
data = np.where(mask == 1, data, nodata).astype("uint8")

write_raster(outfilename, data, transform=transform, crs=DATA_CRS, nodata=nodata)
add_overviews(outfilename)

create_lowres_mask(
    outfilename,
    str(outfilename).replace(".tif", "_mask.tif"),
    factor=MASK_FACTOR,
    ignore_zero=False,
)


### Extract FL indicators from CLIP v4
indicators = {
    "clip4_aggregate": "Priority_CLIP4.tif",
    "clip4_fnai_habitat": "fhab_clip41.tif",
    "clip4_landscape_resource": "landscape_rp_CLIP4.tif",
コード例 #5
0
        width=window.width,
        height=window.height,
        nodata=nodata,
        transform=transform,
        crs=DATA_CRS,
        resampling=Resampling.nearest,
    )

    raw_data = vrt.read()[0]

raw_data = raw_data.astype("uint16")

write_raster(
    src_dir / "midse_raw.tif",
    raw_data,
    transform=transform,
    crs=DATA_CRS,
    nodata=nodata,
)

print("Reclassifying data...")
table = read_dataframe(src_dir / "MidSE_2020_CVI.img.vat.dbf")
table["priority"] = table.M_SEBcode.astype("uint8")
remap_table = table[["Value", "priority"]].values.astype("uint16")

data = remap(raw_data, remap_table, nodata=nodata)

print("Done reclassifying values")

# coerce down to uint8, set nodata to smaller value
data[data == nodata] = 255