コード例 #1
0
ファイル: roc.py プロジェクト: gaberosser/crime-fighter
 def set_network_grid_intersection_lengths(self):
     logger.debug("set_network_grid_intersection_lengths called")
     if RTREE:
         # segment the network into edges intersecting grid squares
         lines = list(self.graph.lines_iter())
         # create an index ahead of time for fast lookups
         geo_idx = index.Index()
         logger.debug("Creating index")
         for i, l in enumerate(lines):
             geo_idx.insert(i, l.bounds)
         self.network_length_in_grid = []
         logger.debug("Starting iteration over %d sample units",
                      self.n_sample_units)
         tic = time()
         for i, t in enumerate(self.sample_units):
             sq = shapely_rectangle_from_vertices(*t)
             length_tally = 0.
             for j in geo_idx.intersection(sq.bounds):
                 length_tally += sq.intersection(lines[j]).length
             self.network_length_in_grid.append(length_tally)
         logger.debug("Complete in %f s", time() - tic)
         self.network_length_in_grid = np.array(self.network_length_in_grid)
     else:
         # this older version is SLOW. Avoid if at all possible
         # segment the network into edges intersecting grid squares
         lines = list(self.graph.lines_iter())
         self.network_length_in_grid = []
         for t in self.sample_units:
             sq = shapely_rectangle_from_vertices(*t)
             this_int = [
                 sq.intersection(t) for t in lines if sq.intersects(t)
             ]
             this_length = sum([t.length for t in this_int])
             self.network_length_in_grid.append(this_length)
         self.network_length_in_grid = np.array(self.network_length_in_grid)
コード例 #2
0
def run_validation(all_data=None,
                   cs=(100, 800),
                   t0=300,
                   sample_unit_size=50,
                   n_validation=50):
    """
    Run a validation on the simulated data and pretrained SEPP model
    :param all_data:
    :param cs: Column spacings to use. Optional - default is [100, 800]
    :param t0: Initial cutoff
    :param sample_unit_size: Size of grid square to use for validation
    :param n_validation: Number of validation iterations to use
    :return:
    """
    if all_data is None:
        all_data = load_saved_data()
    domain = shapely_rectangle_from_vertices(*domain_extent)
    vb_res = {}
    for c in cs:
        try:
            the_sepp = all_data[c]['sepp'][0]
            the_data = all_data[c]['data'][0]
            txy = the_data.time.adddim(the_data.space.to_cartesian())
            vb = validate.SeppValidationPreTrainedModel(
                txy,
                the_sepp,
                include_predictions=False,
                include=('full_static', ))
            vb.set_t_cutoff(t0)
            vb.set_sample_units(sample_unit_size)
            vb_res[c] = vb.run(1, n_iter=n_validation)
        except Exception:
            pass
    return vb_res
コード例 #3
0
def plot_sepp_bg_surface(sepp_obj, domain=None, **kwargs):
    k = sepp_obj.bg_kde
    # if x_range is None:
    #     x_range = [min(sepp_obj.data.toarray(1)), max(sepp_obj.data.toarray(1))]
    #     y_range = [min(sepp_obj.data.toarray(2)), max(sepp_obj.data.toarray(2))]
    # loc = DataArray.from_meshgrid(*np.meshgrid(
    #     np.linspace(x_range[0], x_range[1], npt),
    #     np.linspace(y_range[0], y_range[1], npt),
    #     ))
    # z = k.partial_marginal_pdf(loc)

    # if ax is None:
    #     fig = plt.figure()
    #     ax = fig.add_subplot(111)

    # ax.contourf(loc.toarray(0), loc.toarray(1), z, 50)
    # ax.set_aspect('equal')
    # if domain is not None:
    func = lambda x, y: k.partial_marginal_pdf(DataArray.from_meshgrid(x, y))
    if domain is None:
        xmin, xmax = min(sepp_obj.data.toarray(1)), max(
            sepp_obj.data.toarray(1))
        ymin, ymax = min(sepp_obj.data.toarray(2)), max(
            sepp_obj.data.toarray(2))
        domain = shapely_rectangle_from_vertices(xmin, ymin, xmax, ymax)
    plot_surface_function_on_polygon(domain, func=func, **kwargs)
    plt.axis('equal')
コード例 #4
0
def create_grid_squares_shapefile(outfile, side_length=250):
    mpoly = get_boundary()
    ipoly, fpoly, full = spatial.create_spatial_grid(mpoly, side_length)
    field_description = {'id': {'fieldType': 'N'}}
    id = range(1, len(fpoly) + 1)
    full_polys = [spatial.shapely_rectangle_from_vertices(*t) for t in fpoly]
    spatial.write_polygons_to_shapefile(outfile,
                                        full_polys,
                                        field_description=field_description,
                                        id=id)
コード例 #5
0
ファイル: roc.py プロジェクト: gaberosser/crime-fighter
    def plot(self,
             show_sample_units=True,
             show_sample_points=False,
             show_prediction=True,
             fmax=0.9,
             cmap='Reds',
             ax=None,
             **kwargs):
        if ax is None:
            fig = plt.figure()
            ax = fig.add_subplot(111)
            ax.set_aspect('equal')
        plot_shapely_geos(self.poly, facecolor='none', edgecolor='k', ax=ax)

        if show_prediction:
            # create dictionary of segment colours for plotting
            # this requires creating a norm instance and using that to index a colourmap
            cmapper = colour_mapper(self.prediction_values, fmax=fmax, vmin=0)
            for pv, grid in zip(self.prediction_values, self.sample_units):
                sq = shapely_rectangle_from_vertices(*grid)
                plot_shapely_geos(sq,
                                  ax=ax,
                                  facecolor=cmapper.to_rgba(pv),
                                  edgecolor='none',
                                  alpha=kwargs.pop('alpha', 0.4))

        if show_sample_units:
            plot_shapely_geos([
                shapely_rectangle_from_vertices(*grid)
                for grid in self.sample_units
            ],
                              ax=ax,
                              facecolor='none')

        if show_sample_points:
            plt.scatter(*self.sample_points.separate, s=10, c='k', marker='o')

        # remove x and y ticks as these rarely add anything
        ax.set_xticks([])
        ax.set_yticks([])
        plt.draw()
コード例 #6
0
def run_anisotropic_k(net_pts, dmax=400, nsim=50):
    bds = net_pts.graph.extent
    xr = bds[2] - bds[0]
    yr = bds[3] - bds[1]
    buff = 0.01
    bd_poly = shapely_rectangle_from_vertices(
        bds[0] - xr * buff,
        bds[1] - yr * buff,
        bds[2] + xr * buff,
        bds[3] + yr * buff,
    )
    xy = net_pts.to_cartesian()
    # default behaviour; start at pi/8 and move in intervals of pi/4
    rk = ripley.RipleyKAnisotropicC2(xy, dmax, bd_poly)
    rk.process()

    u = np.linspace(0, dmax, 100)
    k_obs = rk.compute_k(u)
    k_sim = rk.run_permutation(u, niter=nsim)

    return u, k_obs, k_sim
コード例 #7
0
def plot_compare_network_planar(net_v,
                                planar_v,
                                cutoff_t=None,
                                poly=None,
                                training=None,
                                testing=None,
                                cmap='Reds',
                                fmax=0.99,
                                bounds=None,
                                show_grid_ranking=False):
    """
    Produce plots comparing network and grid-based prediction methods.
    :param net_v: Validation object
    :param planar_v: Validation object
    :param cutoff_t: cutoff time, defaults to whatever is currently assigned
    :param poly: If supplied, plot the boundary poly
    :param training: If supplied, plot training data (i.e. past crimes)
    :param testing: If supplied, plot testing data (i.e. future crimes)
    :param cmap:
    :param fmax: Maximum colour level as a percentile
    :param bounds: If supplied, zoom plot to this region
    :param show_grid_ranking: If True, overlay numbers to show the order in which grid squares will be selected
    :return:
    """
    net_obj = net_v.data.graph

    # compute grid and net based prediction values
    net_z = net_v.model.predict(cutoff_t + 1., net_v.sample_points)
    planar_z = planar_v.predict(cutoff_t + 1.)
    # aggregate to grid - this is stolen directly from the ROC code
    planar_grid_values = []
    tally = 0
    for n in planar_v.roc.n_sample_point_per_unit:
        planar_grid_values.append(np.mean(planar_z[tally:tally + n]))
        tally += n
    planar_grid_values = np.array(planar_grid_values)

    # get max values
    idx = bisect.bisect_left(np.linspace(0, 1, net_z.size), fmax)
    net_vmax = sorted(net_z)[idx]
    idx = bisect.bisect_left(np.linspace(0, 1, planar_grid_values.size), fmax)
    planar_vmax = sorted(planar_grid_values)[idx]

    # get training data sizes if applicable
    # these are proportional to the time component
    if training:
        training_x = training.toarray(1)
        training_y = training.toarray(2)
        training_t = training.toarray(0)
        training_size = 500 * np.exp(-(cutoff_t - training_t) / 28.)

    # get testing data sizes if applicable
    if testing:
        testing_x = testing.toarray(1)
        testing_y = testing.toarray(2)
        testing_t = testing.toarray(0)
        testing_size = 500 * np.exp(-(testing_t - cutoff_t) / 3.)

    fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(15, 7))

    # left hand plot
    # plot basic network structure
    net_plots.plot_network_edge_lines(net_obj.lines_iter(), ax=axs[0])
    # overlay shaded grid
    grid = [
        shapely_rectangle_from_vertices(*t) for t in planar_v.roc.sample_units
    ]
    plotting.spatial.plot_shaded_regions(grid,
                                         planar_grid_values,
                                         ax=axs[0],
                                         fmax=fmax,
                                         cmap=cmap,
                                         alpha=0.8,
                                         colorbar=False,
                                         scale_bar=None)
    if poly:
        plotting.spatial.plot_shapely_geos(poly,
                                           fc='none',
                                           ec='b',
                                           lw=1.5,
                                           ax=axs[0])
    if training:
        # zorder to elevate above the grid surface
        axs[0].scatter(training_x,
                       training_y,
                       edgecolors='b',
                       facecolors='none',
                       s=training_size,
                       lw=1.5,
                       zorder=10)
    if testing:
        # zorder to elevate above the grid surface
        axs[0].scatter(testing_x,
                       testing_y,
                       edgecolors='g',
                       facecolors='none',
                       s=testing_size,
                       lw=1.5,
                       zorder=10)

    # right hand plot
    axs[1].axis('off')
    # unfilled grid
    plotting.spatial.plot_shapely_geos(grid,
                                       fc='None',
                                       ec='k',
                                       alpha=0.8,
                                       ax=axs[1])
    # scatter density
    xy = net_v.sample_points.to_cartesian()
    axs[1].scatter(xy.toarray(0),
                   xy.toarray(1),
                   c=net_z,
                   s=20,
                   cmap=cmap,
                   edgecolor='none')
    net_plots.plot_network_edge_lines(net_obj.lines_iter(), ax=axs[1])

    if poly:
        plotting.spatial.plot_shapely_geos(poly,
                                           fc='none',
                                           ec='b',
                                           lw=1.5,
                                           ax=axs[1])
    if training:
        axs[1].scatter(training_x,
                       training_y,
                       edgecolors='b',
                       facecolors='none',
                       s=training_size,
                       lw=1.5)
    if testing:
        axs[1].scatter(testing_x,
                       testing_y,
                       edgecolors='g',
                       facecolors='none',
                       s=testing_size,
                       lw=1.5)

    plt.tight_layout(pad=0., h_pad=0., w_pad=0., rect=(0, 0, 1, 1))
    if bounds is not None:
        axs[0].axis(bounds)

    if show_grid_ranking:
        # compute ranking
        grid_ranking = np.argsort(planar_grid_values)
        for i in range(grid_ranking.size):
            c = grid[i].centroid
            axs[0].text(c.x,
                        c.y,
                        str(i + 1),
                        fontsize=20,
                        color='k',
                        zorder=11,
                        horizontalalignment='center',
                        verticalalignment='center',
                        clip_on=True)
コード例 #8
0
ファイル: camden.py プロジェクト: gaberosser/crime-fighter
    ax.set_position([0, 0, 1, 1])

    # GRID-BASED prediction
    data_txy = all_data.time.adddim(all_data.space.to_cartesian(), type=models.CartesianSpaceTimeData)
    sk_planar = hotspot.STLinearSpaceExponentialTime(radius=h, mean_time=t_decay)
    vb_planar = validation.ValidationIntegration(data_txy, sk_planar, spatial_domain=boro_poly, include_predictions=True)
    vb_planar.set_t_cutoff(INITAL_CUTOFF)
    vb_planar.set_sample_units(grid_length, n_samples)
    res = vb_planar.run(1, n_iter=1)
    zp = res['prediction_values'][0]

    fig = plt.figure(figsize=figsize)
    ax = fig.add_subplot(111)
    plots.plot_network_edge_lines(itn_net.lines_iter(), ax=ax)  # specify ax
    # overlay shaded grid
    grid = [shapely_rectangle_from_vertices(*t) for t in vb_planar.roc.sample_units]
    plotting.spatial.plot_shaded_regions(grid,
                                         zp,
                                         ax=ax,
                                         fmax=0.98,
                                         cmap=cmap,
                                         colorbar=False,
                                         scale_bar=None)
    ax.axis(axlims)
    ax.set_position([0, 0, 1, 1])


    # ADMINISTRATIVE UNIT based predictions
    wards = cad.get_camden_wards(as_shapely=True)
    sample_points = [spatial.random_points_within_poly(w, n_samples) for w in wards]
    sample_xy = np.concatenate([np.array(t).transpose() for t in sample_points])
コード例 #9
0
    res = []
    for fn in files:
        with open(os.path.join(OUT_DIR, 'birmingham', fn), 'r') as f:
            res.append(pickle.load(f))

    return res


if __name__ == '__main__':
    # load existing results: net sample units and prediction values, grid sample units and prediction values
    # grid sample units have been recomputed using compute_planar_grid
    grid_units, grid_vals, net_units, net_vals = load_prediction_values_and_sample_units(
    )

    # reduce the network to enable faster plotting
    bbox = shapely_rectangle_from_vertices(XMIN, YMIN, XMAX, YMAX)
    net = net_units[0].graph
    net_reduced = net.within_boundary(bbox)

    # find remaining sample units
    fids = set([e.fid for e in net_reduced.edges()])
    net_idx = [i for i, e in enumerate(net_units) if e.fid in fids]
    net_units_reduced = [net_units[i] for i in net_idx]
    net_lines_reduced = [
        t.linestring.intersection(bbox) for t in net_units_reduced
    ]
    net_vals_reduced = net_vals[:, net_idx]

    # repeat for grid results
    grid_idx = [
        i for i, p in enumerate(grid_units['polys']) if p.intersects(bbox)
コード例 #10
0
    pred_t = 180.
    arr_fun = lambda x, y: plots.txy_to_cartesian_data_array(np.ones_like(x) * pred_t, x, y)
    pred_fun = lambda x, y: r.predict(arr_fun(x, y))
    xx, yy, zz = spatial.plot_surface_function_on_polygon(domain, pred_fun, ax=ax, fmax=0.98, cmap=cm, dx=50)
    ax.axis('off')
    plt.tight_layout()

    fig.savefig('continuous_heatmap.png', dpi=300)
    fig.savefig('continuous_heatmap.pdf', dpi=300)

    # (2) top 10 % grid squares
    ipolys, full_extents, full_grid_square = create_spatial_grid(domain, 200)
    grid_values = []
    for xmin, ymin, xmax, ymax in full_extents:
        i, j = np.where((xx >= xmin) & (xx < xmax) & (yy >= ymin) & (yy < ymax))
        grid_values.append(zz[i, j].sum())
    sort_idx = np.argsort(grid_values)[::-1]
    top_10_pct = sort_idx[:int(len(sort_idx) * 0.1)]
    top_10_pct_grids = [shapely_rectangle_from_vertices(*full_extents[i]) for i in top_10_pct]

    fig = plt.figure(figsize=(5, 6))
    ax = fig.add_subplot(111)
    net.plot_network(ax=ax)
    spatial.plot_shapely_geos(domain, ax=ax)
    spatial.plot_shapely_geos(top_10_pct_grids, ax=ax, fc='r', ec='none', lw=1.5, alpha=0.7)

    ax.axis('off')
    plt.tight_layout()

    fig.savefig('top_10_pct_grids.png', dpi=300)
    fig.savefig('top_10_pct_grids.pdf', dpi=300)
コード例 #11
0
from point_process import simulate, estimation, models
from analysis.spatial import shapely_rectangle_from_vertices
from scripts.rosser_cheng_isotropic_sepp.ripleys_k_analysis import run_anisotropic_k
from scripts import OUT_DIR
import numpy as np
import os
import dill
from matplotlib import pyplot as plt
from matplotlib.patches import Circle

subdir = os.path.join(OUT_DIR, 'anisotropy_simulation_study',
                      'patchy_background')
domain_extent = [0., 0., 5000., 5000.]
boundary = shapely_rectangle_from_vertices(*domain_extent)
col_spacings = [100., 200., 400., 800.]
row_space = 100.
sim_bg_sigma = 100.


def simulate_data_and_train():

    niter = 10

    sim_t_total = 1000.
    sim_num_to_prune = 400
    # sim_bg_sigma = 100.

    train_kwargs = {
        'niter': 100,
    }