コード例 #1
0
def market_simulator(df_orders, df_orders_benchmark, start_val=1000000, commission=9.95, 
    impact=0.005, daily_rf=0.0, samples_per_year=252.0, save_fig=False, fig_name="plot.png"):
    """
    This function takes in and executes trades from orders dataframes

    Parameters:
    df_orders: A dataframe that contains portfolio orders
    df_orders_benchmark: A dataframe that contains benchmark orders
    start_val: The starting cash in dollars
    commission: The fixed amount in dollars charged for each transaction (both entry and exit)
    impact: The amount the price moves against the trader compared to the historical data at each transaction
    daily_rf: Daily risk-free rate, assuming it does not change
    samples_per_year: Sampling frequency per year
    save_fig: Whether to save the plot or not
    fig_name: The name of the saved figure

    Returns:
    Print out final portfolio value of the portfolio, as well as Sharpe ratio, 
    cumulative return, average daily return and standard deviation of the portfolio and Benchmark.
    Plot a chart of the portfolio and benchmark performances

    """
    
    # Process portfolio orders
    portvals = compute_portvals(df_orders=df_orders, start_val=start_val, 
        commission=commission, impact=impact)

    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals,
     daily_rf=daily_rf, samples_per_year=samples_per_year)
    
    # Process benchmark orders
    portvals_bm = compute_portvals(df_orders=df_orders_benchmark, start_val=start_val, 
        commission=commission, impact=impact)
    
    # Get benchmark stats
    cum_ret_bm, avg_daily_ret_bm, std_daily_ret_bm, sharpe_ratio_bm = get_portfolio_stats(portvals_bm,
     daily_rf=daily_rf, samples_per_year=samples_per_year)

    # Compare portfolio against Benchmark
    print ("Sharpe Ratio of Portfolio: {}".format(sharpe_ratio))
    print ("Sharpe Ratio of Benchmark : {}".format(sharpe_ratio_bm))
    print ()
    print ("Cumulative Return of Portfolio: {}".format(cum_ret))
    print ("Cumulative Return of Benchmark : {}".format(cum_ret_bm))
    print ()
    print ("Standard Deviation of Portfolio: {}".format(std_daily_ret))
    print ("Standard Deviation of Benchmark : {}".format(std_daily_ret_bm))
    print ()
    print ("Average Daily Return of Portfolio: {}".format(avg_daily_ret))
    print ("Average Daily Return of Benchmark : {}".format(avg_daily_ret_bm))
    print ()
    print ("Final Portfolio Value: {}".format(portvals.iloc[-1, -1]))
    print ("Final Benchmark Value: {}".format(portvals_bm.iloc[-1, -1]))

    # Rename columns and normalize data to the first date of the date range
    portvals.rename(columns={"port_val": "Portfolio"}, inplace=True)
    portvals_bm.rename(columns={"port_val": "Benchmark"}, inplace=True)
    plot_norm_data_vertical_lines(df_orders, portvals, portvals_bm,
        save_fig=False, fig_name="plot.png")
コード例 #2
0
def simulateOrders(start_date, end_date, orders_file, start_val, title="Portfolio Value"):
    # Process orders
    portvals = compute_portvals(start_date, end_date, orders_file, start_val)
    if isinstance(portvals, pd.DataFrame):
        portvals = portvals[portvals.columns[0]]  # if a DataFrame is returned select the first column to get a Series

    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

    # Simulate a $SPX-only reference portfolio to get stats
    prices_SPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    prices_SPX = prices_SPX[['$SPX']]  # remove SPY
    portvals_SPX = get_portfolio_value(prices_SPX, [1.0])
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = get_portfolio_stats(portvals_SPX)

    # Compare portfolio against $SPX
    print "Data Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of $SPX: {}".format(sharpe_ratio_SPX)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of $SPX: {}".format(cum_ret_SPX)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of $SPX: {}".format(std_daily_ret_SPX)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of $SPX: {}".format(avg_daily_ret_SPX)
    print
    print "Final Portfolio Value: {}".format(portvals[-1])

    # Plot computed daily portfolio value
    df_temp = pd.concat([portvals, prices_SPX['$SPX']], keys=['Portfolio', 'SPY'], axis=1)
    plot_normalized_data(df_temp, title)
コード例 #3
0
ファイル: marketsim.py プロジェクト: kesamet/ML4T
def test_run():
    """Driver function."""
    # Define input parameters
    # Test 1
#    start_date = '2011-01-05'
#    end_date = '2011-01-20'
#    orders_file = os.path.join(".\orders", "orders-short.csv")
#    start_val = 1000000
    
    # Test 2
#    start_date = '2011-01-10'
#    end_date = '2011-12-20'
#    orders_file = os.path.join(".\orders", "orders.csv")
#    start_val = 1000000
    
    # Test 3
    start_date = '2011-01-14'
    end_date = '2011-12-14'
    orders_file = os.path.join(".\orders", "orders2.csv")
    start_val = 1000000
    
    
    # Process orders
    portvals = compute_portvals(start_date, end_date, orders_file, start_val)
    if isinstance(portvals, pd.DataFrame):
        portvals = portvals[portvals.columns[0]]  # if a DataFrame is returned select the first column to get a Series
    
    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

    # Simulate a $SPX-only reference portfolio to get stats
    prices_SPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    prices_SPX = prices_SPX[['$SPX']]  # remove SPY
    portvals_SPX = get_portfolio_value(prices_SPX, [1.0])
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = get_portfolio_stats(portvals_SPX)

    # Compare portfolio against $SPX
    print "Data Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of $SPX: {}".format(sharpe_ratio_SPX)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of $SPX: {}".format(cum_ret_SPX)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of $SPX: {}".format(std_daily_ret_SPX)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of $SPX: {}".format(avg_daily_ret_SPX)
    print
    print "Final Portfolio Value: {}".format(portvals[-1])

    # Plot computed daily portfolio value
    df_temp = pd.concat([portvals, prices_SPX['$SPX']], keys=['Portfolio', '$SPX'], axis=1)
    plot_normalized_data(df_temp, title="Daily portfolio value and $SPX")
コード例 #4
0
def testcode_marketsim(symbol = 'ML_based', base_dir = './orders/', \
                       sv = 100000, leverLimit = True, verbose = True):
    ###    Use one of the order folders below    ###
    #    of = "./orders/benchmark.csv"
    #    of = "./orders/bestPossibleStrategy.csv"
    #    of = "./orders/rule_based.csv"
    #    of = "./orders/ML_based.csv"
    of = symbol_to_path(symbol, base_dir)

    #    sv = 100000 # starting value of portfolio, i.e. initial cash available

    # Process orders
    portVals = compute_portvals(of, sv, leverLimit)
    if isinstance(portVals, pd.DataFrame):
        portVals = portVals[
            portVals.columns[0]]  # just get the first column as a Series
    else:
        "warning, code did not return a DataFrame"

    start_date = portVals.index[0]
    end_date = portVals.index[-1]
    pricesSPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    pricesSPX = pricesSPX['$SPX']

    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portVals, \
                                                daily_rf = 0, samples_per_year = 252)
    cum_ret_SPY, avg_daily_ret_SPY, std_daily_ret_SPY, sharpe_ratio_SPY = \
            get_portfolio_stats(pricesSPX, daily_rf = 0, samples_per_year = 252)

    # Compare portfolio against $SPX
    if verbose == True:
        dfTemp = pd.concat([portVals, pricesSPX],
                           axis=1,
                           keys=['portfolio', '$SPX'])
        plot_normalized_data(dfTemp, '', '', '')

        print "\nDate Range: {} to {}".format(start_date.date(),
                                              end_date.date())
        print
        print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
        print "Sharpe Ratio of SPY : {}".format(sharpe_ratio_SPY)
        print
        print "Cumulative Return of Fund: {}".format(cum_ret)
        print "Cumulative Return of SPY : {}".format(cum_ret_SPY)
        print
        print "Standard Deviation of Fund: {}".format(std_daily_ret)
        print "Standard Deviation of SPY : {}".format(std_daily_ret_SPY)
        print
        print "Average Daily Return of Fund: {}".format(avg_daily_ret)
        print "Average Daily Return of SPY : {}".format(avg_daily_ret_SPY)
        print
        print "Final Portfolio Value: {}".format(portVals[-1])

    return cum_ret, portVals
コード例 #5
0
def error_alloc_vol(allocs, portfolio, start_val=1):
    """Function that takes allocations and portfolio and returns the
    portfolio's sharpe ratio*(-1).  Used with find_optimsed_alloc."""
    port_final = get_portfolio_value(portfolio, allocs, start_val)
    cum_ret, ave_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        port_final)
    return cum_ret
コード例 #6
0
def optimize_portfolio(start_date, end_date, symbols):
    """Simulate and optimize portfolio allocations."""
    # Read in adjusted closing prices for given symbols, date range
    dates = pd.date_range(start_date, end_date)
    prices_all = get_data(symbols, dates)  # automatically adds SPY
    prices = prices_all[symbols]  # only portfolio symbols
    prices_SPY = prices_all['SPY']  # only SPY, for comparison later

    # Get optimal allocations
    allocs = find_optimal_allocations(prices)
    allocs = allocs / np.sum(allocs)  # normalize allocations, if they don't sum to 1.0

    # Get daily portfolio value (already normalized since we use default start_val=1.0)
    port_val = get_portfolio_value(prices, allocs)

    # Get portfolio statistics (note: std_daily_ret = volatility)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)

    # Print statistics
    print "Start Date:", start_date
    print "End Date:", end_date
    print "Symbols:", symbols
    print "Optimal allocations:", allocs
    print "Sharpe Ratio:", sharpe_ratio
    print "Volatility (stdev of daily returns):", std_daily_ret
    print "Average Daily Return:", avg_daily_ret
    print "Cumulative Return:", cum_ret

    # Compare daily portfolio value with normalized SPY
    normed_SPY = prices_SPY / prices_SPY.ix[0, :]
    df_temp = pd.concat([port_val, normed_SPY], keys=['Portfolio', 'SPY'], axis=1)
    plot_data(df_temp, title="Daily Portfolio Value and SPY")
コード例 #7
0
def optimize_portfolio(start_date, end_date, symbols):
    """Simulate and optimize portfolio allocations."""
    # Read in adjusted closing prices for given symbols, date range
    dates = pd.date_range(start_date, end_date)
    prices_all = get_data(symbols, dates)  # automatically adds SPY
    prices = prices_all[symbols]  # only portfolio symbols
    prices_SPY = prices_all['SPY']  # only SPY, for comparison later

    # Get optimal allocations


    allocs = find_optimal_allocations(prices)

    allocs = allocs / np.sum(allocs)  # normalize allocations, if they don't sum to 1.0

    # Get daily portfolio value (already normalized since we use default start_val=1.0)
    port_val = get_portfolio_value(prices, allocs)

    # Get portfolio statistics (note: std_daily_ret = volatility)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)

    # Print statistics
    print "Start Date:", start_date
    print "End Date:", end_date
    print "Symbols:", symbols
    print "Optimal allocations:", allocs
    print "Sharpe Ratio:", sharpe_ratio
    print "Volatility (stdev of daily returns):", std_daily_ret
    print "Average Daily Return:", avg_daily_ret
    print "Cumulative Return:", cum_ret

    # Compare daily portfolio value with normalized SPY
    normed_SPY = prices_SPY / prices_SPY.ix[0, :]
    df_temp = pd.concat([port_val, normed_SPY], keys=['Portfolio', 'SPY'], axis=1)
    plot_data(df_temp, title="Daily Portfolio Value and SPY")
コード例 #8
0
def sharpe_func(allocs, prices):
    "compute sharpe ratio given allocs and price data"
    port_val = get_portfolio_value(prices, allocs, 1)
    port_stats = get_portfolio_stats(port_val)

    sharpe_ratio = port_stats[3]
    return (-1 * sharpe_ratio)
コード例 #9
0
    def f(X):
        Y = get_portfolio_stats(get_portfolio_value(
            prices, [X[0], X[1], X[2], X[3]], start_val=1),
                                daily_rf=0,
                                samples_per_year=252)[3] * -1

        return Y
コード例 #10
0
ファイル: optimization.py プロジェクト: repogit44/MLT
def find_sharpe_ratio(allocs, prices):
    start_val = 1
    port_val = get_portfolio_value(prices, allocs, start_val)
    daily_rf = 0
    samples_per_year = 252
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val, daily_rf, samples_per_year)

    return -sharpe_ratio
def get_negative_sharp_ratio(prices, allocs):
     # Get daily portfolio value
    port_val = get_portfolio_value(prices=prices, allocs=allocs)
    #plot_data(port_val, title="Daily Portfolio Value")

    # Get portfolio statistics (note: std_daily_ret = volatility)
    _, _, _, sharpe_ratio = get_portfolio_stats(port_val)
    return sharpe_ratio * -1
コード例 #12
0
def statistics(weights):
    global gprices
    weights = np.array(weights)
    port_val =  get_portfolio_value(gprices, weights)
    gret = port_val.sum()
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)

    return np.array([gret, std_daily_ret, sharpe_ratio])
def get_negative_sharp_ratio(prices, allocs):
    # Get daily portfolio value
    port_val = get_portfolio_value(prices=prices, allocs=allocs)
    #plot_data(port_val, title="Daily Portfolio Value")

    # Get portfolio statistics (note: std_daily_ret = volatility)
    _, _, _, sharpe_ratio = get_portfolio_stats(port_val)
    return sharpe_ratio * -1
コード例 #14
0
def test_code():
    ###    Use one of the order folders below    ###
    ###    of = "./orders/orders-leverage-3.csv" # verify from wiki
    of = "./orders_mc2p1_spr2016/orders-12-modified.csv"  #verify from saved pdf
    sv = 1000000  # starting value of portfolio, i.e. initial cash available

    # Process orders
    portVals = compute_portvals(orders_file=of, start_val=sv)
    if isinstance(portVals, pd.DataFrame):
        portVals = portVals[
            portVals.columns[0]]  # just get the first column as a Series
    else:
        "warning, code did not return a DataFrame"

    start_date = portVals.index[0]
    end_date = portVals.index[-1]
    pricesSPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    pricesSPX = pricesSPX['$SPX']

    dfTemp = pd.concat([portVals, pricesSPX],
                       axis=1,
                       keys=['portfolio', '$SPX'])
    plot_normalized_data(dfTemp, '', '', '')

    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portVals, \
                                                daily_rf = 0, samples_per_year = 252)
    cum_ret_SPY, avg_daily_ret_SPY, std_daily_ret_SPY, sharpe_ratio_SPY = \
            get_portfolio_stats(pricesSPX, daily_rf = 0, samples_per_year = 252)

    # Compare portfolio against $SPX
    print "\nDate Range: {} to {}".format(start_date.date(), end_date.date())
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of SPY : {}".format(sharpe_ratio_SPY)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of SPY : {}".format(cum_ret_SPY)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of SPY : {}".format(std_daily_ret_SPY)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of SPY : {}".format(avg_daily_ret_SPY)
    print
    print "Final Portfolio Value: {}".format(portVals[-1])
コード例 #15
0
    def negSharpeRatio(allocs, prices):
        # Get daily portfolio value (already normalized since we use default start_val=1.0)
        port_val = get_portfolio_value(prices, allocs)

        # Get portfolio statistics (note: std_daily_ret = volatility)
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
            port_val)

        return (sharpe_ratio * -1)
コード例 #16
0
ファイル: marketsim.py プロジェクト: bryrmeg/stocks
def test_run(start_date, end_date, orders, start_val,plot=True):
    # Process orders
    portvals = compute_portvals(start_date, end_date, orders, start_val)
    if isinstance(portvals, pd.DataFrame):
        portvals = portvals[portvals.columns[0]]  # if a DataFrame is returned select the first column to get a Series
    
    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

    # Simulate a SPY-only reference portfolio to get stats
    prices_SPX = get_data(['SPY'], pd.date_range(start_date, end_date))
    prices_SPX = prices_SPX[['SPY']]  # remove SPY
    portvals_SPX = get_portfolio_value(prices_SPX, [1.0])
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = get_portfolio_stats(portvals_SPX)

    # Compare portfolio against $SPX
    print "Data Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of $SPX: {}".format(sharpe_ratio_SPX)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of $SPX: {}".format(cum_ret_SPX)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of $SPX: {}".format(std_daily_ret_SPX)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of $SPX: {}".format(avg_daily_ret_SPX)
    print
    print "Final Portfolio Value: {}".format(portvals[-1])
    print "Final SPY Value: {}".format(portvals_SPX[-1]*start_val)
    
    # Plot computed daily portfolio value
    if plot == True:
        df_temp = pd.concat([portvals, prices_SPX['SPY']], keys=['Portfolio', 'SPY'], axis=1)
        plot_normalized_data(df_temp, title="Daily portfolio value", ylabel="Normalized Price")
コード例 #17
0
def optimise_portfolio(sd, ed, syms, rfr=0.0, sf=252, gen_plot=True):
    """Find the optimal allocation for a given set of stocks, optimised for 
    volatility (standard deviation of daily return).
    Parameters:
    -----------
    sd: A datetime object that represents the start date
    ed: A datetime object that represents the end date
    syms: A list of symbols that make up the portfolio
    rfr: float - risk free rate, default to 0.0 per day.
    sf: int - sampling frequency per year, default to 252 days
    gen_plot: If True, create a plot named plot.png
    Returns:
    -------
    allocs: A 1-d Numpy ndarray of allocations to the stocks. All the 
    allocations must be between 0.0 and 1.0 and they must sum to 1.0.
    cr: Cumulative return
    adr: Average daily return
    sddr: Standard deviation of daily return
    sr: Sharpe ratio
    """
    #---------Build the portfolio---------------------------------
    joint_df = get_port_SPY(sd, ed, syms)  #syms + SPY df
    port = joint_df[0]  #portfolio df w/o SPY
    SPY = joint_df[1]  #SPY df - used to add to plot later
    normed_SPY = normalise_data(SPY)  #Normalise SPY

    #Find the optimal allocations
    optimised_alloc = find_optimised_alloc(port, error_alloc_vol)

    #portfolio based on optimised allocations
    optimised_port = get_portfolio_value(port, optimised_alloc)

    #Get optimised portfolio's performance statistics
    cum_ret, ave_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        optimised_port)

    #----------Plot the normalised portfolio and SPY prices--------
    if gen_plot == True:
        df_temp = pd.concat([optimised_port, normed_SPY],
                            keys=['Portfolio', 'SPY'],
                            axis=1)
        plot_data(df_temp,
                  title='Daily portfolio value and SPY',
                  fontsize=2,
                  xlabel='Date',
                  ylabel='Normalised price')

    return optimised_alloc, cum_ret, ave_daily_ret, std_daily_ret, sharpe_ratio
コード例 #18
0
def sharpe_maximizer(allocs, prices):
    """Optimization function to be passed to the optimizer.
    
    Parameters
    ----------
        prices: daily prices for each stock in portfolio
        allocs: Allocation for each portfolio component
    
    Returns
    -------
        sharpe_ratio: Negative sharpe ratio so the minimizer finds the maximum
    
    """
    #Get portfolio value
    port_val = get_portfolio_value(prices, allocs)
    #Get portfolio statistics
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)
    
    return -sharpe_ratio
コード例 #19
0
def sharpe_maximizer(allocs, prices):
    """Optimization function to be passed to the optimizer.
    
    Parameters
    ----------
        prices: daily prices for each stock in portfolio
        allocs: Allocation for each portfolio component
    
    Returns
    -------
        sharpe_ratio: Negative sharpe ratio so the minimizer finds the maximum
    
    """
    #Get portfolio value
    port_val = get_portfolio_value(prices, allocs)
    #Get portfolio statistics
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        port_val)

    return -sharpe_ratio
    def try_get_portfolio_stats(self, portvals):
        statsMethodExists = True

        # First try from previous assignment file
        try:
            cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        except AttributeError:
            statsMethodExists = False

        if statsMethodExists:
            return statsMethodExists, cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio

        # Otherwise try this function
        try:
            cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = marketsim.assess_my_portfolio(portvals)
        except AttributeError:
            statsMethodExists = False

        if statsMethodExists:
            return statsMethodExists, cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio

        return False, 0.0, 0.0, 0.0, 0.0
    def test_orders(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals)

        self.assertAlmostEqual(1133860.0, final_portfolio_value, 4, "Final portfolio value {} is incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(240, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))
        
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        
        expected_value = 1.21540888742
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)
        
        expected_value = 0.13386
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)
        
        expected_value = 0.00720514136323
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)
        
        expected_value = 0.000551651296638
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg daily return {} is incorrect. Expected {}".format(avg_daily_ret[0], expected_value), delta=None)
    
        '''
    def test_orders_leverage_2(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders-leverage-2.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals)

        self.assertAlmostEqual(1074650.0, final_portfolio_value, 4, "Final portfolio value is {} incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(37, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))
        
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        
        expected_value = 4.92529481246
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)
        
        expected_value = 0.07465
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)
        
        expected_value = 0.00651837064888
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)
        
        expected_value = 0.00202241842159
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg dailt return {} is incorrect. Expected".format(avg_daily_ret[0], expected_value), delta=None)
        
        '''
    def test_orders_leverage_1(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders-leverage-1.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals)

        self.assertAlmostEqual(1050160.0, final_portfolio_value, 4, "Final portfolio value is {} incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(106, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))
        
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        
        expected_value = 1.19402406143
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)
        
        expected_value = 0.05016
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)
        
        expected_value = 0.00647534272091
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)
        
        expected_value = 0.000487052265169
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg daily return {} is incorrect. Expected {}".format(avg_daily_ret[0], expected_value), delta=None)
        
        '''
    def test_orders_leverage_3(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders-leverage-3.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals)

        self.assertAlmostEqual(1050160.0, final_portfolio_value, 4, "Final portfolio value is {} incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(141, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))

        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

        expected_value = 1.03455887842
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)

        expected_value = 0.05016
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)

        expected_value = 0.00560508094997
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)

        expected_value = 0.000365289198877
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg dailt return {} is incorrect. Expected".format(avg_daily_ret[0], expected_value), delta=None)

        '''
    def test_orders2(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders2.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals)

        self.assertAlmostEqual(1078752.6, final_portfolio_value, 4, "Final portfolio value {} is incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(232, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))

        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        
        expected_value = 0.788982285751
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)
        
        expected_value = 0.0787526
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)
        
        expected_value = 0.00711102080156
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)
        
        expected_value = 0.000353426354584
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg daily return {} is incorrect. Expected {}".format(avg_daily_ret[0], expected_value), delta=None)
                
        '''
    def test_orders_short(self):
        portvals = marketsim.compute_portvals(orders_file = "./orders/orders-short.csv", start_val=1000000)
        final_portfolio_value = portvals.ix[-1,:][0]
        final_portfolio_dataframe_length = len(portvals) 

        self.assertAlmostEqual(998035.0, final_portfolio_value, 4, "Final portfolio value {} is incorrect".format(final_portfolio_value), delta=None)
        self.assertEqual(11, final_portfolio_dataframe_length, "Final portfolio dataframe length {} is incorrect".format(final_portfolio_dataframe_length))
        
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)
        
        expected_value = -0.446948390642
        self.assertAlmostEqual(expected_value, sharpe_ratio[0], 4, "Sharpe ratio {} is incorrect. Expected {}".format(sharpe_ratio[0], expected_value), delta=None)
        
        expected_value = -0.001965
        self.assertAlmostEqual(expected_value, cum_ret[0], 4, "Cumulative return {} is incorrect. Expected {}".format(cum_ret[0], expected_value), delta=None)
        
        expected_value = 0.00634128215394
        self.assertAlmostEqual(expected_value, std_daily_ret[0], 4, "Standard deviation {} is incorrect. Expected {}".format(std_daily_ret[0], expected_value), delta=None)
        
        expected_value = -0.000178539446839
        self.assertAlmostEqual(expected_value, avg_daily_ret[0], 4, "Avg daily return {} is incorrect. Expected {}".format(avg_daily_ret[0], expected_value), delta=None)
    
        '''
コード例 #27
0
    def test_compute_portvals(self):
        orders_file = "./orders/orders.csv"
        portvals = compute_portvals(orders_file)

        # Check if portvals is a dataframe
        self.assertTrue(isinstance(portvals, pd.DataFrame))

        # Test portfolio stats
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
            portvals, daily_rf=0.0, samples_per_year=252.0)
        self.assertTrue(math.isclose(cum_ret, 0.108872698544, rel_tol=0.02),
                        "Cumulative return is incorrect")
        self.assertTrue(
            math.isclose(avg_daily_ret, 0.000459098655493, rel_tol=0.02),
            "Average daily return is incorrect")
        self.assertTrue(
            math.isclose(std_daily_ret, 0.00730509916835, rel_tol=0.02),
            "Standard deviation is incorrect")
        self.assertTrue(
            math.isclose(sharpe_ratio, 0.997654521878, rel_tol=0.02),
            "Sharpe ratio is incorrect")
        self.assertTrue(
            math.isclose(portvals.iloc[-1, -1], 1106025.8065, rel_tol=0.02),
            "Portfolio value is incorrect")
コード例 #28
0
def optimize_portfolio(sd=dt.datetime(2008,1,1), ed=dt.datetime(2009,1,1), \
    syms=['GOOG','AAPL','GLD','XOM'], gen_plot=False):
    start_val = 1000000
    daily_rf = 0
    samples_per_year = 252
    # Read in adjusted closing prices for given symbols, date range
    dates = pd.date_range(sd, ed)
    prices_all = get_data(syms, dates)  # automatically adds SPY
    prices = prices_all[syms]  # only portfolio symbols
    prices_SPY = prices_all['SPY']  # only SPY, for comparison later

    # find the allocations for the optimal portfolio
    allocGuess = np.ones(len(syms), dtype='float32') / len(syms)
    setBnds = tuple([(0, 1) for x, y in enumerate(allocGuess)
                     ])  #create tuple of (0,1) tuples
    # 'constraints' below constrains allocations to sum to 1
    # and 'setBnds' forces each allocation to lie in (0,1)
    srMax = spo.minimize(cost, allocGuess, bounds = setBnds, \
            constraints = ({ 'type': 'eq', 'fun': lambda inputs: 1.0 - np.sum(inputs) }), \
            args = (prices,start_val,daily_rf,samples_per_year,), \
            method = 'SLSQP', options = {'disp': True})
    allocs = srMax.x

    portVal = get_portfolio_value(prices, allocs, start_val)
    cr, adr, sddr, sr = get_portfolio_stats(portVal, daily_rf,
                                            samples_per_year)

    # Compare daily portfolio value with SPY using a normalized plot
    if gen_plot:
        df_temp = pd.concat([portVal, prices_SPY],
                            keys=['Portfolio', 'SPY'],
                            axis=1)
        plot_normalized_data(df_temp, 'Optimized portfolio values', 'date', \
                             'normalized price')

    return allocs, cr, adr, sddr, sr
    def try_get_portfolio_stats(self, portvals):
        statsMethodExists = True

        # First try from previous assignment file
        try:
            cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
                portvals)
        except AttributeError:
            statsMethodExists = False

        if statsMethodExists:
            return statsMethodExists, cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio

        # Otherwise try this function
        try:
            cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = marketsim.assess_my_portfolio(
                portvals)
        except AttributeError:
            statsMethodExists = False

        if statsMethodExists:
            return statsMethodExists, cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio

        return False, 0., 0., 0., 0.
コード例 #30
0
    def test_compute_portvals(self):
        orders_file = "./orders/orders2.csv"
        portvals = compute_portvals(orders_file)

        # Check if portvals is a dataframe
        self.assertTrue(isinstance(portvals, pd.DataFrame))

        # Test portfolio stats
        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
            portvals, daily_rf=0.0, samples_per_year=252.0)
        self.assertTrue(math.isclose(cum_ret, 0.0538411196951, rel_tol=0.02),
                        "Cumulative return is incorrect")
        self.assertTrue(
            math.isclose(avg_daily_ret, 0.000253483085898, rel_tol=0.02),
            "Average daily return is incorrect")
        self.assertTrue(
            math.isclose(std_daily_ret, 0.00728172910323, rel_tol=0.02),
            "Standard deviation is incorrect")
        self.assertTrue(
            math.isclose(sharpe_ratio, 0.552604907987, rel_tol=0.02),
            "Sharpe ratio is incorrect")
        self.assertTrue(
            math.isclose(portvals.iloc[-1, -1], 1051088.0915, rel_tol=0.02),
            "Portfolio value is incorrect")
コード例 #31
0
def cost(allocs, prices, start_val, daily_rf, samples_per_year):
    portVal = get_portfolio_value(prices, allocs, start_val)
    cr, adr, sddr, sr = get_portfolio_stats(portVal, daily_rf,
                                            samples_per_year)
    return -sr
コード例 #32
0
 def min_fun(x):
     x = np.array(x)
     port_val = get_portfolio_value(prices, x)
     cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)     
     return -sharpe_ratio
コード例 #33
0
 def min_sharpe_ratio(allocs):
     '''Returns the sharpe ratio of the portfolio with weights.'''
     port_val = get_portfolio_value(prices, allocs, start_val=1)
     sharpe = get_portfolio_stats(port_val)[3]
     return -sharpe
コード例 #34
0
def function_to_minimize(allocs, prices):
    port_val = get_portfolio_value(prices, allocs, start_val=1000000)
    stats = get_portfolio_stats(port_val)
    sharpe_ratio = stats[3]
    return -sharpe_ratio
コード例 #35
0
def min_func_sharpe(weights, prices):
    port_val = get_portfolio_value(prices, weights)
    return -get_portfolio_stats(port_val)[3]
コード例 #36
0
def sharpe_ratio(allocs,prices):
    port_val = get_portfolio_value(prices, allocs)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)
    return -1*sharpe_ratio
コード例 #37
0
def statistics(weights):
    weights = np.array(weights)
    port_val = get_portfolio_value(df, weights, 1)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        port_val)
    return sharpe_ratio
コード例 #38
0
def min_func_sharpe(allocs, prices):
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        get_portfolio_value(prices, allocs, 1))
    return (-1 * sharpe_ratio)
コード例 #39
0
def test_run():

    """Driver function."""
    # Define input parameters
    start_date = '2007-12-31'
    end_date = '2009-12-31'
    orders_file = os.path.join("orders", "current_order.csv")
    dates = pd.date_range(start_date, end_date)
    symbols = ['IBM']
    df = get_data(symbols, dates, True)

    window_size = 20

    sma_band, upper_band, lower_band = get_bands(df['IBM'],window=window_size)

    #+1 going out, -1 coming in
    transition_array_upper = np.pad(np.diff(np.array(df['IBM'] > upper_band).astype(int)),
                    (1,0), 'constant', constant_values = (0,))

    #+2 stock price going up,-2 stock price going down
    transition_array_sma = np.pad(np.diff(np.array(df['IBM'] > sma_band).astype(int)*2),
                    (1,0), 'constant', constant_values = (0,))

    #+3 stock price going up from lower_band,-3 stock price going down from lower_band
    transition_array_lower = np.pad(np.diff(np.array(df['IBM'] > lower_band).astype(int)*3),
                    (1,0), 'constant', constant_values = (0,))

    write_orders(df,transition_array_upper,transition_array_sma,transition_array_lower, orders_file)

    ax = df['IBM'].plot(title="Bollinger Bands", label='IBM')
    sma_band.plot(label='SMA', ax=ax, color = 'Goldenrod')
    upper_band.plot(label='Upper Bollinger Band', ax=ax, color = 'Turquoise')
    lower_band.plot(label='Lower Bollinger Band', ax=ax, color = 'Turquoise')
    ax.set_xlabel("Date")
    ax.set_ylabel("Price")
    ax.legend(loc='upper left')
    plt.show()

    portvals = compute_portvals(start_date, end_date, orders_file, 10000)

    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

    # Simulate a $SPX-only reference portfolio to get stats
    prices_SPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    prices_SPX = prices_SPX[['$SPX']]  # remove SPY
    portvals_SPX = get_portfolio_value(prices_SPX, [1.0])
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = get_portfolio_stats(portvals_SPX)

    # Compare portfolio against $SPX
    print "Data Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of $SPX: {}".format(sharpe_ratio_SPX)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of $SPX: {}".format(cum_ret_SPX)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of $SPX: {}".format(std_daily_ret_SPX)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of $SPX: {}".format(avg_daily_ret_SPX)
    print
    print "Final Portfolio Value: {}".format(portvals[-1])

    # Plot computed daily portfolio value
    df_temp = pd.concat([portvals, prices_SPX['$SPX']], keys=['Portfolio', 'SPY'], axis=1)
    plot_normalized_data(df_temp, title="Daily portfolio value")
コード例 #40
0
ファイル: optimization.py プロジェクト: ace0fsp8z/CS7646
def min_func_sharpe(allocs, prices):
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(get_portfolio_value(prices, allocs, 1))
    return (-1*sharpe_ratio)
コード例 #41
0
def sharp_func(allocs, prices):

    port_val = get_portfolio_value(prices, allocs, start_val=1)
    sharpe_ratio = get_portfolio_stats(port_val)[3]
    return sharpe_ratio * -1
コード例 #42
0
    def add_evidence(self, df_prices, symbol="IBM", start_val=100000):
        """Create a QLearner, and train it for trading.

        Parameters:
        df_prices: Data price dataframe
        symbol: The stock symbol to act on
        start_val: Start value of the portfolio which contains only the symbol
        """

        # Get features and thresholds
        df_features = self.get_features(df_prices['Adj Close'])
        thresholds = self.get_thresholds(df_features, self.num_steps)
        cum_returns = []
        epochs = []
        for epoch in range(1, self.epochs + 1):
            # Initial position is holding nothing
            position = self.CASH
            # Create a series that captures order signals based on actions taken
            orders = pd.Series(index=df_features.index)
            # Iterate over the data by date
            for day, date in enumerate(df_features.index):
                # Get a state; add 1 to position so that states >= 0
                state = self.discretize(df_features.loc[date], position + 1,
                                        thresholds)
                # On the first day, get an action without updating the Q-table
                if date == df_features.index[0]:
                    action = self.q_learner.query_set_state(state)
                # On other days, calculate the reward and update the Q-table
                else:
                    prev_price = df_prices['Adj Close'].iloc[day - 1]
                    curr_price = df_prices['Adj Close'].loc[date]
                    reward = self.get_daily_reward(prev_price, curr_price,
                                                   position)
                    action = self.q_learner.query(state, reward)
                # On the last day, close any open positions
                if date == df_features.index[-1]:
                    new_pos = -position
                else:
                    new_pos = self.get_position(position, action - 1)
                # Add new_pos to orders
                orders.loc[date] = new_pos
                # Update current position
                position += new_pos

            df_trades = create_df_trades(orders, symbol, self.num_shares)

            portvals = compute_portvals_single_symbol(
                df_orders=df_trades,
                symbol=symbol,
                start_val=start_val,
                commission=self.commission,
                impact=self.impact)
            cum_return = get_portfolio_stats(portvals)[0]
            cum_returns.append(cum_return)
            epochs.append(epoch)
            if self.verbose:
                print(epoch, cum_return)
            # Check for convergence after running for at least 20 epochs
            if epoch > 10:
                # Stop if the cum_return doesn't improve for 10 epochs
                if self.has_converged(cum_returns):
                    break
        if self.verbose:
            return plot_cum_return(epochs, cum_returns)
コード例 #43
0
ファイル: optimization.py プロジェクト: z0r00/ML-Trading
def find_negative_sharpe(allocs, prices):

    port_val = get_portfolio_value(prices, allocs)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        port_val)
    return sharpe_ratio * (-1.0)
コード例 #44
0
def market_simulator(orders_file,
                     start_val=1000000,
                     daily_rf=0.0,
                     samples_per_year=252.0,
                     save_fig=False,
                     fig_name="plot.png"):
    """
    This function takes in an orders file and execute trades based on the file

    Parameters:
    orders_file: The file whose orders will be execute
    start_val: The starting cash in dollars
    daily_rf: Daily risk-free rate, assuming it does not change
    samples_per_year: Sampling frequency per year

    Returns:
    Print out final portfolio value of the portfolio, as well as Sharpe ratio, 
    cumulative return, average daily return and standard deviation of the portfolio and $SPX.
    Plot a chart of the portfolio and $SPX performances

    """

    # Process orders
    portvals = compute_portvals(orders_file=orders_file, start_val=start_val)
    if not isinstance(portvals, pd.DataFrame):
        print("warning, code did not return a DataFrame")

    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(
        portvals, daily_rf=daily_rf, samples_per_year=samples_per_year)

    # Get the stats for $SPX for the same date range for comparison
    start_date = portvals.index.min()
    end_date = portvals.index.max()
    SPX_prices = get_data(["$SPX"],
                          pd.date_range(start_date, end_date),
                          addSPY=False).dropna()
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = \
    get_portfolio_stats(SPX_prices, daily_rf=daily_rf, samples_per_year=samples_per_year)

    # Compare portfolio against $SPX
    print("Date Range: {} to {}".format(start_date, end_date))
    print()
    print("Sharpe Ratio of Fund: {}".format(sharpe_ratio))
    print("Sharpe Ratio of $SPX : {}".format(sharpe_ratio_SPX))
    print()
    print("Cumulative Return of Fund: {}".format(cum_ret))
    print("Cumulative Return of $SPX : {}".format(cum_ret_SPX))
    print()
    print("Standard Deviation of Fund: {}".format(std_daily_ret))
    print("Standard Deviation of $SPX : {}".format(std_daily_ret_SPX))
    print()
    print("Average Daily Return of Fund: {}".format(avg_daily_ret))
    print("Average Daily Return of $SPX : {}".format(avg_daily_ret_SPX))
    print()
    print("Final Portfolio Value: {}".format(portvals.iloc[-1, -1]))

    # Plot the data
    plot_normalized_data(SPX_prices.join(portvals),
                         "Portfolio vs. SPX",
                         "Date",
                         "Normalized prices",
                         save_fig=save_fig,
                         fig_name=fig_name)
コード例 #45
0
def error_optimal_allocations(allocs, prices):
    port_val = get_portfolio_value(prices, allocs, 1)
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(port_val)
    error = sharpe_ratio * -1
    return error
コード例 #46
0
def sharp_func(allocs, prices):

    port_val = get_portfolio_value(prices, allocs, start_val=1)
    sharpe_ratio = get_portfolio_stats(port_val)[3]
    return sharpe_ratio * -1
コード例 #47
0
ファイル: bollinger_strategy.py プロジェクト: kesamet/ML4T
def test_run():
    """Driver function."""
    # Define input parameters
    start_date = '2007-12-31'
    end_date = '2009-12-31'
    symbol = 'IBM'
    
    dates = pd.date_range(start_date, end_date)
    prices_all = get_data([symbol], dates)
    prices = prices_all[symbol]
    
    # Compute Bollinger Bands
    rm = get_rolling_mean(prices, window=20)
    rstd = get_rolling_std(prices, window=20)
    upper_band, lower_band = get_bollinger_bands(rm, rstd)

    # Find Bollinger strategy orders
    df_orders = get_orders_bollinger(symbol, prices, rm, upper_band, 
                                     lower_band, window=20)
    
    # Plot raw values, rolling mean and Bollinger Bands
    plot_data_bollinger(symbol, prices, rm, upper_band, lower_band, df_orders)
    
    #orders_file = os.path.join(".\orders", "orders-short.csv")
    with open('orders3.csv', 'wb') as outfile:
        writer = csv.writer(outfile, delimiter=',')
        writer.writerow(['Date', 'Symbol', 'Order', 'Shares'])
        for i in range(len(df_orders)):
            writer.writerow([df_orders.ix[i,0].strftime('%Y-%m-%d'), 
                             df_orders.ix[i,1], df_orders.ix[i,2], df_orders.ix[i,3]])
    
    
    ###########################################################################
    orders_file = os.path.join("orders3.csv")
    start_val = 10000
    
    # Process orders
    portvals = compute_portvals(start_date, end_date, orders_file, start_val)
    if isinstance(portvals, pd.DataFrame):
        portvals = portvals[portvals.columns[0]]
    
    # Get portfolio stats
    cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = get_portfolio_stats(portvals)

    # Simulate a $SPX-only reference portfolio to get stats
    prices_SPX = get_data(['$SPX'], pd.date_range(start_date, end_date))
    prices_SPX = prices_SPX[['$SPX']]  # remove SPY
    portvals_SPX = get_portfolio_value(prices_SPX, [1.0])
    cum_ret_SPX, avg_daily_ret_SPX, std_daily_ret_SPX, sharpe_ratio_SPX = get_portfolio_stats(portvals_SPX)

    # Compare portfolio against $SPX
    print "Data Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of Fund: {}".format(sharpe_ratio)
    print "Sharpe Ratio of $SPX: {}".format(sharpe_ratio_SPX)
    print
    print "Cumulative Return of Fund: {}".format(cum_ret)
    print "Cumulative Return of $SPX: {}".format(cum_ret_SPX)
    print
    print "Standard Deviation of Fund: {}".format(std_daily_ret)
    print "Standard Deviation of $SPX: {}".format(std_daily_ret_SPX)
    print
    print "Average Daily Return of Fund: {}".format(avg_daily_ret)
    print "Average Daily Return of $SPX: {}".format(avg_daily_ret_SPX)
    print
    print "Final Portfolio Value: {}".format(portvals[-1])
コード例 #48
0
    def add_evidence(self, symbol="IBM", start_date=dt.datetime(2008,1,1),
        end_date=dt.datetime(2009,12,31), start_val = 10000):
        """Create a QLearner, and train it for trading.

        Parameters:
        symbol: The stock symbol to act on
        start_date: A datetime object that represents the start date
        end_date: A datetime object that represents the end date
        start_val: Start value of the portfolio which contains only the symbol
        """
        dates = pd.date_range(start_date, end_date)
        # Get adjusted close prices for symbol
        df_prices = get_data([symbol], dates)
        # Get features and thresholds
        df_features = self.get_features(df_prices[symbol])
        thresholds = self.get_thresholds(df_features, self.num_steps)
        cum_returns = []
        for epoch in range(1, self.epochs + 1):
            # Initial position is holding nothing
            position = self.CASH
            # Create a series that captures order signals based on actions taken
            orders = pd.Series(index=df_features.index)
            # Iterate over the data by date

            for day, date in enumerate(df_features.index):
                # Get a state; add 1 to position so that states >= 0
                state = self.discretize(df_features.loc[date], 
                                        position + 1, thresholds)
                # On the first day, get an action without updating the Q-table
                if date == df_features.index[0]:
                    # Get the first action based on nothing
                    # action = self.q_learner.act(state)
                    action = self.q_learner.act(state, 0.0, update=False)

                # On other days, calculate the reward and update the Q-table
                else:
                    prev_price = df_prices[symbol].iloc[day-1]
                    curr_price = df_prices[symbol].loc[date]
                    reward = self.get_daily_reward(prev_price, 
                                                   curr_price, position)
                    action = self.q_learner.act(state, reward, update=True, done=date==df_features.index[-1])
                # On the last day, close any open positions
                if date == df_features.index[-1]:
                    new_pos = -position
                else:
                    new_pos = self.get_position(position, action - 1)

                # Add new_pos to orders
                orders.loc[date] = new_pos
                # Update current position
                position += new_pos
            
            self.q_learner.replay(batch_size=32)

            df_trades = create_df_trades(orders, symbol, self.num_shares)
            portvals = compute_portvals_single_symbol(df_orders=df_trades, 
                                                      symbol=symbol, 
                                                      start_val=start_val, 
                                                      commission=self.commission,
                                                      impact=self.impact)
            cum_return = get_portfolio_stats(portvals)[0]
            cum_returns.append(cum_return)
            if self.verbose: 
                print (epoch, cum_return)
            # Check for convergence after running for at least 20 epochs
            if epoch > 20:
                # Stop if the cum_return doesn't improve for 10 epochs
                if self.has_converged(cum_returns):
                    break
        if self.verbose:
            sns.heatmap(self.q_learner.Q, cmap='Blues')
            plt.plot(cum_returns)
            plt.xlabel("Epoch")
            plt.ylabel("Cumulative return (%)")
            plt.show()
コード例 #49
0
ファイル: optimization.py プロジェクト: NiranjanUpreti01/MLT
def get_sharpe_ratio(allocs,prices):
    port_val = get_portfolio_value(prices,allocs)
    sharpe_ratio = get_portfolio_stats(port_val)[-1]
    sharpe_ratio = -1.0 * sharpe_ratio
    return sharpe_ratio