def do_analysis(minuit_new=False,add_group_ps=False,ps_number=0,fdn=True,fdrun=False): global emin,emax, eachps_En_center, ps_norms, diffnormfix if method=='polychord': polychord=True else: polychord=False b.run_tag = run_tag_energy tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord,minuit_new=minuit_new) plot_name='triangle_ps_' + str(ps_number) + '.pdf' tri.make_triangle(plot_name=plot_name) if not minuit_new: sle = fa.save_log_evidence(b,edep=True,polychord=polychord) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],edep=True,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit_new = minuit_new,input_mask=force_ps_mask,the_input_mask=b.mask_total) # spectra over the whole energy range cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) eachps_En_center = cs.En_center cs.make_norm_dict() cs.make_spectra_dict() if not fdrun: full_dict['nfw_ps_'+str(ps_number)] = cs.spectra_dict['nfw-0'] if add_group_ps: full_dict['ps_comb_'+str(ps_number)] = cs.spectra_dict['ps_comb-0'] else: diffnormfix = cs.norm_dict[diff + '-0']
def do_analysis(i=0,n_ps_groupi=0,psloop1=False,pscomball=False,psloop2bkg=False,psloop2=False,minuit_new=False): global emin,emax, eachps_dict, eachps_En_center, TSbkg, TS, ps_norms_loop1, ps_norms if method=='polychord': polychord=True else: polychord=False b.run_tag = run_tag_energy tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord,minuit_new=minuit_new) if psloop1: plot_name='triangle_psloop1_i' + str(i+1) + '.pdf' if pscomball: plot_name='triangle_pscomball.pdf' if psloop2bkg: plot_name='triangle_psloop2bkg_i' + str(i+1) + '.pdf' if psloop2: plot_name='triangle_psloop2_i' + str(i+1) + '.pdf' tri.make_triangle(plot_name=plot_name) if not minuit_new: sle = fa.save_log_evidence(b,edep=True,polychord=polychord) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) if not pscomball: cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],edep=True,band_mask_range=[0,0]) else: cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],edep=True,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit_new = minuit_new,input_mask=force_ps_mask,the_input_mask=b.mask_total) # spectra over the whole energy range cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) eachps_En_center = cs.En_center if psloop1 or pscomball or psloop2: cs.make_norm_dict() if psloop2 or psloop2bkg or pscomball: cs.make_spectra_dict() if pscomball: cs.save_spectra_dict(spect_dir + save_spect_label,emin,emax,over_write=True) cs.save_norm_dict(spect_dir + save_norm_label,emin,emax,over_write=True) if psloop1: # Add in new norm values for j in range(n_ps_groupi): ps_norms_loop1[i*n_ps_run+j] *= cs.norm_dict['ps_' + str(i*n_ps_run+j+1) + '-0'] # Update existing norm values if not the first loop if i != 0: for k in range(i*n_ps_run): ps_norms_loop1[k] *= cs.norm_dict['ps_comb-0'] if psloop2bkg: TSbkg = 2*b.s['nested sampling global log-evidence'] # Add norms to eachps_dict dictionary if psloop2: TS = 2*b.s['nested sampling global log-evidence'] - TSbkg eachts_dict['ps_' + str(i+1)] = TS eachps_dict['ps_' + str(i+1)] = cs.spectra_dict['ps_' + str(i+1) + '-0'] ps_norms[i] *= cs.norm_dict['ps_' + str(i+1) + '-0']
def compute_bayes(): if just_disk: fa.save_log_evidence(b_disk,edep=True) if poiss: fa.save_log_evidence(b_poiss,edep=True) if plus_IPS: fa.save_log_evidence(b_plus_IPS,edep=True) if plus_IPS and just_disk: cbc_plus_IPS = compute_bayes_class(b_plus_IPS.plots_dir_for_run + 'lge.txt',b_disk.plots_dir_for_run + 'lge.txt', b_plus_IPS.plots_dir_for_run + 'bayes.txt')
def do_analysis(minuit_new=False): global emin,emax if method=='polychord': polychord=True else: polychord=False b.run_tag = run_tag_energy tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord,minuit_new=minuit_new) tri.make_triangle() sle = fa.save_log_evidence(b,edep=True,polychord=polychord) cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit=True,input_mask=force_ps_mask,the_input_mask=b.mask_total,edep=True) cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) cs.make_spectra_dict() for i in cs.spectra_dict.keys(): print i,"has flux:",cs.spectra_dict[i]
def do_analysis(i=0,n_ps_groupi=0,psloop1=False,pscomball=False,psloop2=False,minuit_new=False): global emin,emax, eachps_dict, eachps_En_center if method=='polychord': polychord=True else: polychord=False b.run_tag = run_tag_energy tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord,minuit_new=minuit_new) tri.make_triangle() if not minuit_new: sle = fa.save_log_evidence(b,edep=True,polychord=polychord) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],edep=True,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit_new = minuit_new,input_mask=force_ps_mask,the_input_mask=b.mask_total) # spectra over the whole energy range cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) eachps_En_center = cs.En_center if psloop1 or pscomball: cs.make_norm_dict() if psloop2 or pscomball: cs.make_spectra_dict() if pscomball: cs.save_spectra_dict(spect_dir + save_spect_label,emin,emax,over_write= False) cs.save_norm_dict(spect_dir + save_norm_label,emin,emax,over_write= False) if psloop1: # Create pslooptemp and psalltemp pslooptempar = np.zeros(hp.nside2npix(nside)) if os.path.exists(ps_temp_dir + pslooptemp): pslooptempar += fits.open(ps_temp_dir + pslooptemp)[0].data for j in range(n_ps_groupi): pstempj = b.templates_dict['ps_' + str(i*n_ps_run+j+1) + '-0'][0] psnormj = cs.norm_dict['ps_' + str(i*n_ps_run+j+1) + '-0'] pswritej = pstempj*psnormj pslooptempar += pswritej fits.append(ps_temp_dir + psalltemp, pswritej) fits.writeto(ps_temp_dir + pslooptemp,pslooptempar,clobber=True) # Add norms to eachps_dict dictionary if psloop2: eachps_dict['ps_' + str(i+1)] = cs.spectra_dict['ps_' + str(i+1) + '-0']
if computing_spectra: #b.configure_for_edep_scan() - this is already called in initiate poissonian edep b.initiate_poissonian_edep() ######################### #perform scan / load scan if run: print 'The nside for this scan is ', b.nside b.perform_scan(run_tag = run_tag_energy) if analysis: b.run_tag = run_tag_energy #make triangle plot tri = fa.make_triangle(b,run_tag_energy,edep=True) tri.make_triangle() sle = fa.save_log_evidence(b,edep=True) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) if computing_spectra: #(self,b,run_tag,En_min,En_max,edep=False,ebin=0,*args,**kwargs) cs = fa.compute_spectra(b,run_tag_energy,b.CTB_en_bins[0],b.CTB_en_bins[-1], band_mask_range = [-mask_b_plot,mask_b_plot],mask_ring = False,edep=True) cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) cs.make_spectra_dict() cs.make_norm_dict() if save_spect_label != 'False' or save_spect_label != 'false': cs.save_spectra_dict(spect_dir + save_spect_label,emin,emax,over_write= False) if save_norm_label != 'False' or save_norm_label != 'false': cs.save_norm_dict(spect_dir + save_norm_label,emin,emax,over_write= False) else: cs = fa.compute_edep_spectra(b,run_tag_energy,b.CTB_en_bins,band_mask_range = [-mask_b_plot,mask_b_plot],mask_ring=False,edep=True) #spectra over whole energy range
#####perform the scan b.configure_for_scan() b.initiate_poissonian() print 'Performing the scan ...' if run: b.perform_scan(run_tag = run_tag_energy) ################## ###perform anaysis if analysis: #make triangle plot tri = fa.make_triangle(b,run_tag_energy) tri.make_triangle() sle = fa.save_log_evidence(b) spect_dir = work_dir + 'data/spect/' spect_dir_ps = spect_dir + '/ps/' for d in [spect_dir,spect_dir_ps]: if not os.path.exists(d): os.mkdir(d) # cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],band_mask_range = [-0.,0.],mask_ring = True,outer=sigma_PSF_deg,lat= 90 - mask_b,lng = mask_ell) #spectra over whole energy range cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],band_mask_range = [-0.,0.],mask_ring = False) #spectra over whole energy range # cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) cs.make_spectra_dict() print cs.spectra_dict cs.make_norm_dict() if save_spect_label != 'False' or save_spect_label != 'false':
def compute_bayes(): fa.save_log_evidence(b,edep=True) fa.save_log_evidence(b_disk,edep=True) fa.save_log_evidence(b_poiss,edep=True) fa.save_log_evidence(b_just_NFW,edep=True) fa.save_log_evidence(b_iso,edep=True) if plus_IPS: fa.save_log_evidence(b_plus_IPS,edep=True) print 'D&N Vs. D' cbc = compute_bayes_class(b.plots_dir_for_run + 'lge.txt',b_disk.plots_dir_for_run + 'lge.txt', b.plots_dir_for_run + 'bayes.txt') print 'D&N Vs. Nothing' cbc_poiss = compute_bayes_class(b.plots_dir_for_run + 'lge.txt',b_poiss.plots_dir_for_run + 'lge.txt', b_poiss.plots_dir_for_run + 'bayes.txt') print 'D&N Vs. I' cbc_I = compute_bayes_class(b.plots_dir_for_run + 'lge.txt',b_iso.plots_dir_for_run + 'lge.txt', b_iso.plots_dir_for_run + 'bayes.txt') print 'D&N Vs. N' cbc_just_nfw = compute_bayes_class(b.plots_dir_for_run + 'lge.txt',b_just_NFW.plots_dir_for_run + 'lge.txt', b_just_NFW.plots_dir_for_run + 'bayes.txt') if plus_IPS: print 'D&N&I Vs. D&N' cbc_plus_IPS = compute_bayes_class(b_plus_IPS.plots_dir_for_run + 'lge.txt',b.plots_dir_for_run + 'lge.txt', b_plus_IPS.plots_dir_for_run + 'bayes.txt')
def do_analysis(minuit_new=False): global emin,emax if method=='polychord': polychord=True else: polychord=False b.run_tag = run_tag_energy tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord,minuit_new=minuit_new) tri.make_triangle() sle = fa.save_log_evidence(b,edep=True,polychord=polychord) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) if save_norm_label != 'False' and save_norm_label != 'false': cs = fa.compute_spectra(b,run_tag_energy,f.CTB_en_bins[0],f.CTB_en_bins[-1],edep=True,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit_new = minuit_new,input_mask=force_ps_mask,the_input_mask=b.mask_total) # spectra over the whole energy range cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) cs.make_spectra_dict() cs.make_norm_dict() cs.save_spectra_dict(spect_dir + save_spect_label,emin,emax,over_write= False) cs.save_norm_dict(spect_dir + save_norm_label,emin,emax,over_write= False) else: cs = fa.compute_edep_spectra(b,run_tag_energy,b.CTB_en_bins,polychord=polychord,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,minuit_new = minuit_new,input_mask=force_ps_mask,the_input_mask=b.mask_total) #,edep=True) cs.make_spectra_dict() cs.save_spectra_dict(spect_dir + save_spect_label) if n_ebins>1: ##plot spectrum msp_inst = msp.make_spectra_plot(spect_dir + save_spect_label + '.npy') if not fixed_background: msp_inst.plot_spectra_median('back',color='Orange',label='back',linestyle='-') if nfw_dm: msp_inst.plot_spectra_median('nfw',color='Chartreuse',label='nfw',linestyle='-') if not fixed_background: msp_inst.plot_spectra_band('back',interpolate=True, alpha=0.5,linewidth=0,facecolor='Orange') if nfw_dm: msp_inst.plot_spectra_band('nfw',interpolate=True, alpha=0.5,linewidth=0,facecolor='Chartreuse') if not poiss: colors=['Blue','Green','Purple'][0:len(ps_list)] for mod,color in map(None,ps_list,colors): msp_inst.plot_spectra_median(mod + '-np',color=color,label=mod+'-np',linestyle='--') msp_inst.plot_spectra_band(mod + '-np',interpolate=True, alpha=0.5,linewidth=0,facecolor=color) plt.axhline(y=0.,color='k',ls='dashed') plt.xscale('log') plt.xlabel('E [GeV]', fontsize=14) plt.ylabel('$E^2 dN / dE$ [GeV / cm$^2$ / s / sr]', fontsize=18) plt.title('Spectrum',fontsize=14) plt.legend(fontsize=12,loc=3) plt.savefig(b.plots_dir_for_run + save_spect_label + '.pdf',bbox_inches='tight') plt.close() if not poiss: print 'medians: ', b.medians_not_log print 'norm_non_poiss: ', b.norms_non_poiss ##save PS templates/medians if len(ps_save_list)>0: for comp, filename in map(None,ps_save_list,ps_save_filename_list): spti=fa.save_ps_template_info(b,run_tag_energy,edep=True,polychord=polychord,minuit_new = minuit_new) spti.save_ps_template(comp,filename) ##plot dn/ds across energies for ebin_num in range(b.number_energy_bins): p3FGL = fa.plot_3FGL(f,CTB_en_min=b.CTB_en_bins[ebin_num],CTB_en_max=b.CTB_en_bins[ebin_num+1],plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,input_mask=force_ps_mask,the_input_mask=b.mask_total) p3FGL.configure_3FGL(flux_min=10**-12,flux_max=10**-8,n_flux_bins = 25,only_gal = not(high_lat),error_range = 0.68) pdnds = fa.plot_dnds(b,plane_mask=plot_plane_mask,band_mask_range = [-plot_pmval,plot_pmval],lcut=plot_lcut,lmin=plot_lmin,lmax=plot_lmax,bcut=plot_bcut,bmin=plot_bmin,bmax=plot_bmax,mask_ring=plot_mask_ring,outer=plot_outer,inner=plot_inner,input_mask=force_ps_mask,the_input_mask=b.mask_total) plt.figure(figsize=(8,6)) p3FGL.plot_3FGL(fmt = 'o', color='black',markersize=7,label='3FGL PS') colors=['Orange','Chartreuse','Blue'][0:len(ps_list)] line_colors=['Red','Green','Purple'][0:len(ps_list)] alpha_list=[1,0.75,0.5][0:len(ps_list)] for mod,color,line_color,alpha in map(None,ps_list,colors,line_colors,alpha_list): print 'plotting source-count function for ', mod pdnds.plot_source_count_band(mod,edep=True,ebin=ebin_num,nsteps=100,calculate_dnds=True,facecolor=color,interpolate=True, alpha=alpha,linewidth=0) pdnds.plot_source_count_median(mod,edep=True,ebin=ebin_num,color=line_color,linestyle='--',label=mod + ' (median)') if len(ps_fixed_filename_list) > 0: for comp in map(None,ps_fixed_list): pdnds.plot_fixed_source_count(comp,ebin=ebin_num,linestyle='-',label=comp + ' (fixed)') plt.xscale('log') plt.yscale('log') plt.ylim((2*10**(5),10**12)) plt.xlim(10**-12., 10**-8.) plt.tick_params(axis='x', length=5,width=2,labelsize=18) plt.tick_params(axis='y',length=5,width=2,labelsize=18) plt.xlabel('$F$ [photons / cm$^2$ / s]', fontsize=18) plt.ylabel('$dN/dF$ [photons$^{-1}$ cm$^2$ s deg$^{-2}$]', fontsize=18) plt.legend(fontsize=15) plt.title('Energy: '+str(np.round(b.CTB_en_bins[ebin_num],3)) + '-'+str(np.round(b.CTB_en_bins[ebin_num+1],3)),fontsize=15) plt.savefig(b.plots_dir_for_run + 'dnds_plot_en_'+str(np.round(b.CTB_en_bins[ebin_num],3)) + '-'+str(np.round(b.CTB_en_bins[ebin_num+1],3)) + '.pdf',bbox_inches='tight') plt.close()
# perform scan / load scan if run: print "The nside for this scan is ", b.nside if method == "minuit": b.perform_scan_minuit(run_tag=run_tag_energy) b.save_minuit() else: b.perform_scan(run_tag=run_tag_energy) if analysis: b.run_tag = run_tag_energy # make triangle plot tri = fa.make_triangle(b, run_tag_energy, edep=True, minuit_new=minuit_new) tri.make_triangle() if not minuit_new: sle = fa.save_log_evidence(b, edep=True, minuit_new=minuit_new) spect_dir = work_dir + "data/spect/" if not os.path.exists(spect_dir): os.mkdir(spect_dir) if computing_spectra: # (self,b,run_tag,En_min,En_max,edep=False,ebin=0,*args,**kwargs) cs = fa.compute_spectra( b, run_tag_energy, b.CTB_en_bins[0], b.CTB_en_bins[-1], band_mask_range=[-mask_b_plot, mask_b_plot], mask_ring=False, minuit_new=minuit_new, edep=True, )
######################### #perform scan / load scan if run: print 'The nside for this scan is ', b.nside #b.perform_scan(run_tag = run_tag_energy) if polychord: b.perform_scan_polychord(run_tag = run_tag_energy) else: b.perform_scan(run_tag = run_tag_energy) if analysis: b.run_tag = run_tag_energy #make triangle plot tri = fa.make_triangle(b,run_tag_energy,edep=True,polychord=polychord) tri.make_triangle() sle = fa.save_log_evidence(b,edep=True,polychord=polychord) spect_dir = work_dir + 'data/spect/' if not os.path.exists(spect_dir): os.mkdir(spect_dir) cs = fa.compute_edep_spectra(b,run_tag_energy,b.CTB_en_bins,polychord=polychord,band_mask_range = [-mask_b_plot,mask_b_plot],mask_ring = True,outer=outer_plot) #spectra over whole energy range #cs.mask_total_dict['bubs']=np.logical_not(b.templates_dict_nested['bubs']['summed_templates_not_compressed']) cs.make_spectra_dict() cs.save_spectra_dict(spect_dir + save_spect_label) ##plot spectrum msp_inst = msp.make_spectra_plot(spect_dir + save_spect_label + '.npy') if not fixed_background: msp_inst.plot_spectra_median('back',color='Orange',label='back',linestyle='-') if nfw_dm:
def compute_bayes(): fa.save_log_evidence(b, edep=True) fa.save_log_evidence(b_disk, edep=True) fa.save_log_evidence(b_poiss, edep=True) fa.save_log_evidence(b_just_NFW, edep=True) fa.save_log_evidence(b_iso, edep=True) if plus_IPS: fa.save_log_evidence(b_plus_IPS, edep=True) print "D&N Vs. D" cbc = compute_bayes_class( b.plots_dir_for_run + "lge.txt", b_disk.plots_dir_for_run + "lge.txt", b.plots_dir_for_run + "bayes.txt" ) print "D&N Vs. Nothing" cbc_poiss = compute_bayes_class( b.plots_dir_for_run + "lge.txt", b_poiss.plots_dir_for_run + "lge.txt", b_poiss.plots_dir_for_run + "bayes.txt" ) print "D&N Vs. I" cbc_I = compute_bayes_class( b.plots_dir_for_run + "lge.txt", b_iso.plots_dir_for_run + "lge.txt", b_iso.plots_dir_for_run + "bayes.txt" ) print "D&N Vs. N" cbc_just_nfw = compute_bayes_class( b.plots_dir_for_run + "lge.txt", b_just_NFW.plots_dir_for_run + "lge.txt", b_just_NFW.plots_dir_for_run + "bayes.txt", ) if plus_IPS: print "D&N&I Vs. D&N" cbc_plus_IPS = compute_bayes_class( b_plus_IPS.plots_dir_for_run + "lge.txt", b.plots_dir_for_run + "lge.txt", b_plus_IPS.plots_dir_for_run + "bayes.txt", )