コード例 #1
0
def load_EMIC_IMFs_and_dynspec(imf_start, imf_end, IA_filter=None):
    '''
    Loads IMFs and dynamic spectra
    '''
    _ti, _dat, _HM_mags, _dt, _xtime, _xfreq, _pow = get_mag_data(_time_start, _time_end, 
                                    _probe, low_cut=_band_start, high_cut=_band_end)
    sample_rate = 1./_dt
    
    # Calculate IMFs, get instantaneous phase, frequency, amplitude
    print('Sifting IMFs and performing HHT')
    imfs, IPs, IFs, IAs = [], [], [], []
    for ii, lbl in zip(range(3), ['x', 'y', 'z']):
        imf = emd.sift.sift(_dat[:, ii], sift_thresh=1e-2)
        
        IP, IF, IA = emd.spectra.frequency_transform(imf, sample_rate, 'hilbert')
        print(f'{imf.shape[1]} IMFs found for B{lbl}')
        
        imfs.append(imf)
        IPs.append(IP)
        IFs.append(IF)
        IAs.append(IA)

    # Snip IMFs to time
    st, en = ascr.boundary_idx64(_ti, imf_start, imf_end)
    for ii in range(3):
        _imf_t  = _ti[st:en]
        IAs[ii] = IAs[ii][st:en]
        IFs[ii] = IFs[ii][st:en]
        IPs[ii] = IPs[ii][st:en]
    return _ti, _dat, _HM_mags, _imf_t, IAs, IFs, IPs, _xtime, _xfreq, _pow
コード例 #2
0
def get_pc1_peaks(sfreq, spower, band_start, band_end, npeaks=None):
    '''
    Returns integrated spower spectrum between band_start and band_end as well
    as index locations of the most prominent npeaks
    '''
    fst, fen = ascr.boundary_idx64(sfreq, band_start, band_end)
    pc1_int_power = spower[fst:fen, :].sum(axis=0)
    peak_idx = ascr.find_peaks(pc1_int_power, npeaks=npeaks, sortby='prom')
    return pc1_int_power, peak_idx
コード例 #3
0
                spec)] / (kB * 1e6 * spice_dict['F{}DU_Density'.format(spec)])
            this_temp = kB * t_perp_kelvin / q  # Convert from K to eV

            spice_dens.append(this_dens)
            spice_temp.append(this_temp)
            spice_anis.append(this_anis)

        ### COMPARISON PLOTS FOR CHECKING ###
        import matplotlib.pyplot as plt

        # Plot things :: B0HM, cold density, HOPE/RBSPICE hot densities (4 plots)
        fig, axes = plt.subplots(4)

        # B0
        B0 = np.sqrt(raw_mags[:, 0]**2 + raw_mags[:, 1]**2 + raw_mags[:, 2]**2)
        st, en = ascr.boundary_idx64(mag_times, _time_start, _time_end)
        _st, _en = ascr.boundary_idx64(_times, _time_start, _time_end)

        axes[0].set_title(
            'Magnetic field and Cold e/HOPE/RBSPICE ion densities')
        axes[0].plot(mag_times[st:en], 1e-9 * B0[st:en], c='k', label='raw')
        axes[0].plot(_times[_st:_en],
                     _B0[_st:_en],
                     c='r',
                     label='Filtered + Decimated',
                     marker='o')
        axes[0].legend()

        # Cold dens
        axes[1].plot(den_times, 1e6 * edens, c='k', label='raw')
        axes[1].plot(_times, _cold_dens, c='r', label='decimated')
コード例 #4
0
def plot_velocities_and_energies_single(time_start, time_end, probe='a'):
    # Import cutoff-derived composition information
    cutoff_dict = epd.read_cutoff_file(cutoff_filename)
        
    # Load particle and field information
    time, mag, edens = load_CRRES_data(time_start, time_end, nsec=None,
                                        crres_path='E://DATA//CRRES//')

    mag_time, pc1_mags, HM_mags, imf_time, IA, IF, IP, stime, sfreq, spower = \
            load_EMIC_IMFs_and_dynspec(time_start, time_end)
    spower = spower.sum(axis=0)

    cutoff  = np.interp(time.astype(np.int64),
                        cutoff_dict['CUTOFF_TIME'].astype(np.int64),
                        cutoff_dict['CUTOFF_NORM'])
    o_fracs = epd.calculate_o_from_he_and_cutoff(cutoff, he_frac)        
    
    # Get velocity/energy data for time
    plt.ioff()
    for ii in range(time.shape[0]):
        
        # Define time, time index
        this_time   = time[ii]
        maxpwr_tidx = np.where(abs(stime - this_time) == np.min(abs(stime - this_time)))[0][0]
        
        # Find max freq and index
        fst, fen     = ascr.boundary_idx64(sfreq, _band_start, _band_end)
        maxpwr_fidx  = spower[maxpwr_tidx, fst:fen].argmax()
        maxpwr_fidx += fst
        maxpwr_freq  = sfreq[maxpwr_fidx]
        
        #date_string = this_time.astype(object).strftime('%Y%m%d')
        save_string = this_time.astype(object).strftime('%Y%m%d_%H%M%S')
    
        #clr = mapper.to_rgba(time[ii].astype(np.int64))
        print('Doing time:', this_time)
        
        fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(8.0, 0.5*11.00),
                                 gridspec_kw={'width_ratios':[1, 0.01],
                                              'height_ratios':[1, 2, 2, 2]
                                              })
        
        # Spectra/IP
        im0 = axes[0, 0].pcolormesh(stime, sfreq, spower.T, cmap='jet',
                             norm=colors.LogNorm(vmin=1e-4, vmax=1e1))
        axes[0, 0].set_ylim(0, _band_end)
        axes[0, 0].set_ylabel('$f$ [Hz]', rotation=90)
        fig.colorbar(im0, cax=axes[0, 1], extend='both').set_label(
                    r'$\frac{nT^2}{Hz}$', fontsize=16, rotation=0, labelpad=15)
        
        axes[0, 0].axvline(this_time, color='white', ls='-' , alpha=0.7)
        axes[0, 0].set_xlim(time_start, time_end)
        axes[0, 0].set_xticklabels([])
        
        axes[0, 0].axvline(this_time,   color='white', ls='-', alpha=0.75)
        axes[0, 0].axhline(maxpwr_freq, color='white', ls='-', alpha=0.75)
        axes[0, 0].set_title(f'Velocities and Energies :: {this_time}')

        h_frac = 1. - he_frac - o_fracs[ii]
        
        # Cold plasma params, SI units
        B0      = mag[ii]
        name    = np.array(['H'   , 'He'   , 'O'    ])
        mass    = np.array([1.0   , 4.0    , 16.0   ]) * PMASS
        charge  = np.array([1.0   , 1.0    , 1.0    ]) * PCHARGE
        density = np.array([h_frac, he_frac, o_fracs[ii] ]) * edens[ii]
        ani     = np.array([0.0   , 0.0    , 0.0    ])
        tpar    = np.array([0.0   , 0.0    , 0.0    ])
        tper    = (ani + 1) * tpar
        Species, PP = create_species_array(B0, name, mass, charge, density, tper, ani)
        
        # Frequencies to evaluate, calculate wavenumber (cold approximation)
        f_min  = _band_start
        f_max  = _band_end
        Nf     = 10000
        f_vals = np.linspace(f_min, f_max, Nf)
        w_vals = 2*np.pi*f_vals
        k_vals = nls.get_k_cold(w_vals, Species)
        wv_len = 1e-3 * 2*np.pi / k_vals
        
        fidx = np.where(abs(f_vals - maxpwr_freq) == np.min(abs(f_vals - maxpwr_freq)))[0][0] 
        freq = f_vals[fidx]
        
        axes[1, 0].plot(f_vals, wv_len, c='k')
        axes[1, 0].set_ylabel('$\lambda_{EMIC}$ [km]')
        axes[1, 0].set_ylim(0, 2000)
        
        # Velocities
        Vg, Vp, Vr = nls.get_velocities(w_vals, Species, PP)
    
        axes[2, 0].semilogy(f_vals, Vg*1e-3, c='k', label='$V_g$') 
        axes[2, 0].semilogy(f_vals, Vp*1e-3, c='r', label='$V_p$')
        axes[2, 0].semilogy(f_vals,-Vr*1e-3, c='b', label='$-V_R$')
        axes[2, 0].set_ylim(10, 4500)
        axes[2, 0].set_ylabel('Velocities [km/s]')
        axes[2, 0].legend(bbox_to_anchor=(1.0, 0), loc=3, borderaxespad=0.)
        
        # Energies
        ELAND, ECYCL = nls.get_energies(w_vals, k_vals, PP['pcyc_rad'], PMASS)
        axes[3, 0].semilogy(f_vals, ELAND*1e-3, c='r', label='$E_0$')
        axes[3, 0].semilogy(f_vals, ECYCL*1e-3, c='b', label='$E_1$')
        axes[3, 0].set_ylim(1e-1, 1e3)
        axes[3, 0].set_ylabel('$E_R$ [keV]')
        axes[3, 0].set_xlabel('Freq [Hz]', rotation=0)
        axes[3, 0].legend(bbox_to_anchor=(1.0, 0), loc=3, borderaxespad=0.)
        
        # Work out what the energy is at maxpwr_freq
        num_landau    = ELAND[fidx]*1e-3
        num_cyclotron = ECYCL[fidx]*1e-3
        
        axes[3, 0].text(0.8, 0.9, f'$E_0(f) =$ {num_landau:.1f} keV', horizontalalignment='left',
                        verticalalignment='center', transform=axes[3, 0].transAxes)
        axes[3, 0].text(0.8, 0.8, f'$E_1(f) =$ {num_cyclotron:.1f} keV', horizontalalignment='left',
                        verticalalignment='center', transform=axes[3, 0].transAxes)
        
        axes[0, 0].set_xticklabels([])
        axes[1, 0].set_yticks(np.array([0, 500, 1000, 1500]))
        for ax in axes[1:, 0]:
            ax.set_xlim(_band_start, _band_end)
            ax.axvline(freq, color='k', alpha=0.5, ls='--')
            if ax != axes[-1, 0]:
                ax.set_xticklabels([])
        
        axes[1, 1].set_visible(False)
        axes[2, 1].set_visible(False)
        axes[3, 1].set_visible(False)
        
        #fig.tight_layout(rect=[0, 0, 0.95, 1])
        fig.tight_layout()
        fig.subplots_adjust(wspace=0.05, hspace=0)
        fig.align_ylabels()
        
        if save_plot == True:
            print('Saving plot...')
            fig.savefig(_plot_path + 'VELENG_FROMDATA_' + save_string + '.png', dpi=dpi)
            plt.close('all')
        else:
            plt.show()
    return
コード例 #5
0
        line_VG = np.zeros(time.shape[0], dtype=np.float64)
        line_VR = np.zeros(time.shape[0], dtype=np.float64)
        
        max_freqs = np.zeros(time.shape[0], dtype=np.float64)
        
        # Collect info for each time
        for ii in range(time.shape[0]):
            print('Doing time:', time[ii])
            h_frac  = 1. - he_frac - o_frac[ii]
            
            # Define time, time index
            this_time   = time[ii]
            maxpwr_tidx = np.where(abs(stime - this_time) == np.min(abs(stime - this_time)))[0][0]
            
            # Find max freq and index
            fst, fen     = ascr.boundary_idx64(sfreq, _band_start, _band_end)
            maxpwr_fidx  = spower[maxpwr_tidx, fst:fen].argmax()
            maxpwr_fidx += fst
            max_freqs[ii] = sfreq[maxpwr_fidx]
            
            # Cold plasma params, SI units
            B0      = mag[ii]
            name    = np.array(['H'   , 'He'   , 'O'        ])
            mass    = np.array([1.0   , 4.0    , 16.0       ]) * PMASS
            charge  = np.array([1.0   , 1.0    , 1.0        ]) * PCHARGE
            density = np.array([h_frac, he_frac, o_frac[ii] ]) * edens[ii] 
            ani     = np.array([0.0   , 0.0    , 0.0        ])
            tpar    = np.array([0.0   , 0.0    , 0.0        ])
            tper    = (ani + 1) * tpar

            Species, PP = create_species_array(B0, name, mass, charge, density, tper, ani)