def params_prauc_tables(h5d_fl1, h5d_fl2, curvetype, kfolds, params_od, mix, strata, trec): """Area Under the Curve(AUC) paired with table of parameters for PR curve. # # # Make proper Definition here # # # """ # Selecting whether the resaults should be retured in binary(i.e. Trueth-Table)... # ...or multi-class value form. if curvetype == 'multiclass': binary = True else: binary = False # Beginning AUC-Params table building. res_lst = list() # Loading data in a convenient form. for params_lst, params_path in zip( param_comb.ParamGridIter(params_od, 'list'), param_comb.ParamGridIter(params_od, 'path')): # Defining list for AUC values storage. For this loop. auc_values = list() if params_lst[0] > params_lst[1]: if mix: pred_scores, expd_y, pred_y = rfse_multiclass_multimeasure_res( h5d_fl1, h5d_fl2, kfolds, params_path, binary=binary, strata=strata ) else: pred_scores, expd_y, pred_y = multiclass_res( h5d_fl1, kfolds, params_path, binary=binary, strata=strata ) # NOTE: Crossckecking and replacing the class-tags of the experiment to virtual... # ...class tags refering to the index of the np.unique(expd_y) vector in order... # ...to ease the calculations of the curves. tags2idx_ref = np.unique(expd_y) i_fix = 0 if tags2idx_ref[0] > 0: i_fix = 1 for i, tg in enumerate(tags2idx_ref): expd_y[np.where(expd_y == tg)] = i + i_fix pred_y[np.where(pred_y == tg)] = i + i_fix # Selecting the case and calculating the precision recall curves. if curvetype == 'multiclass': # NOTE: Option 'is_truth_tbl' is critical to be selected correctly depending... # ...on the input. prec, recl, t = mx.pr_curve( expd_y, pred_scores, full_curve=True, is_truth_tbl=True ) # Interpolated at 11-Recall-Levels. prec, recl = mx.reclev11_max(prec, recl, trec=trec) elif curvetype == 'multiclass_macro': # NOTE: Option 'unknow_class' is critical to be selected correctly depending... # ...on the input. prec, recl, t = mx.pr_curve_macro( expd_y, pred_y, pred_scores, full_curve=True, ) # Interpolated at 11-Recall-Levels. prec, recl = mx.reclev11_max(prec, recl, trec=trec) elif curvetype == 'onevsall': # Finding unique genres. gnr_tgs = np.unique(expd_y) # Precsion and Recall scores lists of the PR curve per genre. prec_lst = list() recl_lst = list() # Calculating AUC per genre tag. for gnr in gnr_tgs: if mix: pred_scores, expd_y, pred_y = onevsall_multimeasure_res( h5d_fl1, h5d_fl2, gnr, kfolds, params_path ) else: pred_scores, expd_y, pred_y = onevsall_res( h5d_fl1, gnr, kfolds, params_path ) # NOTE: Option 'is_truth_tbl' is critical to be selected correctly depending... # ...on the input. prec_val, recl_val, t = mx.pr_curve( expd_y, pred_scores, full_curve=True, is_truth_tbl=False ) # Interpolated at 11-Recall-Levels. prec_val, recl_val = mx.reclev11_max(prec_val, recl_val, trec=trec) # Keeping Precsion and Recall scores of the PR curve per genre. prec_lst.append(prec) recl_lst.append(recl) # Calculating the PR Averaged Macro Curves values for 1-vs-All case. prec = np.mean(np.vstack(prec_lst), axis=0) recl = np.mean(np.vstack(recl_lst), axis=0) else: raise Exception('Invalide curvetype argument value.') # Saving the AUC value and extending parameters list with AUC(s). try: params_lst.extend([mx.auc(recl, prec)]) except: print "Warning:", params_path, "PR AUC is for these params has set to 0.0" params_lst.extend([0.0]) # Appending the parameters list together with their respective AUC(s). res_lst.append(params_lst) # Stacking and returning the data collected in a 2D array. Last column contain the AUC for... # ...every parameters values possible combination. return np.vstack(res_lst)
h5d_fl1, kfolds, params_path, binary=False, strata=None ) # Closing the h5d files. if comb_val[3] == 'Comb': h5d_fl1.close() h5d_fl2.close() else: h5d_fl1.close() # Creating the Actual PRC. # y, x, t = pr_curve(expd_y, pred_scores, full_curve=True, is_truth_tbl=True) # Creating the Actual MACRO PRC. y, x, t = pr_curve_macro( expd_y, pred_y, pred_scores, full_curve=True ) # Getting the max 11 Recall Leves in TREC way. # if i == 0: y, x = reclev11_max(y, x, trec=False) # Selecting array indices with non-zero cells. non_zero_idx = np.where(y > 0) # # # Do the Plotting linestyle = { "color": plt_dsp_attr[i][0], "linestyle": plt_dsp_attr[i][1], "marker": plt_dsp_attr[i][2], "linewidth": 2,