コード例 #1
0
    def get_metrics(graph, metrics='all'):
        """
        Returns all the metrics associated with the input graph
        :param graph: (NetworkX Graph) Graph to be annotated with data
        :param metrics: metric type to be considered. default = all
        :return: the list of metrics associated with the graph
        """
        metric_list = []
        for node in graph.nodes(data=True):
            node_name = InfoGraphNode.get_name(node)
            node_layer = InfoGraphNode.get_layer(node)
            node_type = InfoGraphNode.get_type(node)
            # This method supports export of either normal metrics coming
            #  from telemetry agent or utilization type of metrics.
            if metrics == 'all':
                node_telemetry_data = InfoGraphNode.get_telemetry_data(node)
            else:
                node_telemetry_data = InfoGraphNode.get_utilization(node)

            metric_list.extend([
                "{}@{}@{}@{}".format(node_name, node_layer, node_type,
                                     metric_name).replace(".", "_")
                for metric_name in node_telemetry_data.columns.values
                if metric_name != 'timestamp'
            ])
        return metric_list
コード例 #2
0
    def _create_pandas_data_frame_from_graph(graph, metrics='all'):
        """
        Save on csv files the data in the graph.
        Stores one csv per node of the graph

        :param graph: (NetworkX Graph) Graph to be annotated with data
        :param directory: (str) directory where to store csv files
        :return: NetworkX Graph annotated with telemetry data
        """
        result = pandas.DataFrame()
        for node in graph.nodes(data=True):
            node_name = InfoGraphNode.get_name(node)
            node_layer = InfoGraphNode.get_layer(node)
            node_type = InfoGraphNode.get_type(node)

            # This method supports export of either normal metrics coming
            #  from telemetry agent or utilization type of metrics.
            if metrics == 'all':
                node_telemetry_data = InfoGraphNode.get_telemetry_data(node)
            else:
                node_telemetry_data = InfoGraphNode.get_utilization(node)
            # df = node_telemetry_data.copy()

            # LOG.info("Node Name: {} -- Telemetry: {}".format(
            #     InfoGraphNode.get_name(node),
            #     InfoGraphNode.get_telemetry_data(node).columns.values
            # ))

            node_telemetry_data['timestamp'] = node_telemetry_data[
                'timestamp'].astype(float)
            node_telemetry_data['timestamp'] = node_telemetry_data[
                'timestamp'].round()
            node_telemetry_data['timestamp'] = node_telemetry_data[
                'timestamp'].astype(int)
            for metric_name in node_telemetry_data.columns.values:
                if metric_name == 'timestamp':
                    continue
                col_name = "{}@{}@{}@{}".\
                    format(node_name, node_layer, node_type, metric_name)
                col_name = col_name.replace(".", "_")
                node_telemetry_data = node_telemetry_data.rename(
                    columns={metric_name: col_name})

                # LOG.info("TELEMETRIA: {}".format(node_telemetry_data.columns.values))

            if node_telemetry_data.empty or len(
                    node_telemetry_data.columns) <= 1:
                continue
            if result.empty:
                result = node_telemetry_data.copy()
            else:
                node_telemetry_data = \
                    node_telemetry_data.drop_duplicates(subset='timestamp')
                result = pandas.merge(result,
                                      node_telemetry_data,
                                      how='outer',
                                      on='timestamp')
            # TODO: Try with this removed
            # result.set_index(['timestamp'])
        return result
コード例 #3
0
    def get_correlation(node_a, node_b, metric_a, metric_b):
        # TODO: Add node validation
        # InfoGraphNode.validateNode(node_a)
        # InfoGraphNode.validateNode(node_b)

        node_name_a = InfoGraphNode.get_name(node_a)
        node_name_b = InfoGraphNode.get_name(node_b)

        if metric_a == 'utilization':
            telemetry_a = InfoGraphNode.get_utilization(node_a)
        else:
            telemetry_a = InfoGraphNode.get_telemetry_data(node_a)

        if metric_b == 'utilization':
            telemetry_b = InfoGraphNode.get_utilization(node_b)
        else:
            telemetry_b = InfoGraphNode.get_telemetry_data(node_b)

        if metric_a not in telemetry_a.columns.values:
            raise ValueError(
                "Metric {} is not in Telemetry data of Node {}".format(
                    metric_a, node_name_a))
        if metric_b not in telemetry_b.columns.values:
            raise ValueError(
                "Metric {} is not in Telemetry data of Node {}".format(
                    metric_b, node_name_b))
        if telemetry_a.empty and telemetry_b.empty:
            return 0

        res = telemetry_a.corrwith(telemetry_b)

        df_a = telemetry_a.\
            rename(columns={metric_a: "a-{}".format(metric_a)}).astype(float)
        df_b = telemetry_b.\
            rename(columns={metric_b: "b-{}".format(metric_b)}).astype(float)
        correlation = pandas.merge(df_a, df_b, how='outer', on='timestamp')
        correlation = correlation.dropna()
        res = correlation["a-{}".format(metric_a)].\
            corr(correlation["b-{}".format(metric_b)])
        return res
コード例 #4
0
    def machine_capacity_usage(annotated_subgraph):
        """
        This is a type of fingerprint from the infrastructure perspective
        """
        # TODO: Validate graph
        categories = list()
        categories.append(InfoGraphNodeCategory.COMPUTE)
        categories.append(InfoGraphNodeCategory.NETWORK)
        # TODO: Add a Volume to the workloads to get HD usage
        categories.append(InfoGraphNodeCategory.STORAGE)
        # TODO: Get telemetry for Memory
        categories.append(InfoGraphNodeCategory.MEMORY)

        fingerprint = dict()
        counter = dict()
        for category in categories:
            fingerprint[category] = 0
            counter[category] = 0

        # calculation of the fingerprint on top of the virtual resources
        local_subgraph = annotated_subgraph.copy()
        local_subgraph.filter_nodes('layer', "virtual")
        local_subgraph.filter_nodes('layer', "service")
        local_subgraph.filter_nodes('type', 'machine')

        for node in local_subgraph.nodes(data=True):
            # if Fingerprint._node_is_nic_on_management_net(
            #         node, annotated_subgraph, mng_net_name):
            #     continue
            name = InfoGraphNode.get_name(node)
            category = InfoGraphNode.get_category(node)
            utilization = InfoGraphNode.get_utilization(node)
            if 'utilization' in utilization.columns.values:
                # LOG.info("NODE: {} - CATEGORY: {}".format(name, category))
                mean = utilization['utilization'].mean()
                fingerprint[category] += mean
                counter[category] += 1

        # This is just an average
        # TODO: Improve the average
        for category in categories:
            if counter[category] > 0:
                fingerprint[category] = \
                    fingerprint[category] / counter[category]
        return fingerprint
コード例 #5
0
    def utilization_scores(graph):
        """
        Returns a dictionary with the scores of
        all the nodes of the graph.

        :param graph: InfoGraph
        :return: dict[node_name] = score
        """
        res = dict()
        for node in graph.nodes(data=True):
            node_name = InfoGraphNode.get_name(node)
            res[node_name] = dict()
            util = InfoGraphNode.get_utilization(node)
            import analytics_engine.common as common
            LOG = common.LOG

            res[node_name]['compute'] = 0
            res[node_name]['disk'] = 0
            res[node_name]['network'] = 0
            res[node_name]['memory'] = 0
            if (isinstance(util, pandas.DataFrame) and
                    util.empty) or \
                    (not isinstance(util, pandas.DataFrame) and
                             util==None):
                continue

            # intel/use/
            if 'intel/use/compute/utilization' in util:
                res[node_name]['compute'] = (
                    util.get('intel/use/compute/utilization').mean()) / 100.0
            elif 'intel/procfs/cpu/utilization_percentage' in util:
                res[node_name]['compute'] = (util.get(
                    'intel/procfs/cpu/utilization_percentage').mean()) / 100.0
            if 'intel/use/memory/utilization' in util:
                res[node_name]['memory'] = (
                    util.get('intel/use/memory/utilization').mean()) / 100.0
            elif 'intel/procfs/memory/utilization_percentage' in util:
                res[node_name]['memory'] = (
                    util.get('intel/procfs/memory/utilization_percentage'
                             ).mean()) / 100.0
            if 'intel/use/disk/utilization' in util:
                res[node_name]['disk'] = (
                    util.get('intel/use/disk/utilization').mean()) / 100.0
            elif 'intel/procfs/disk/utilization_percentage' in util:
                res[node_name]['disk'] = (util.get(
                    'intel/procfs/disk/utilization_percentage').mean()) / 100.0
            if 'intel/use/network/utilization' in util:
                res[node_name]['network'] = (
                    util.get('intel/use/network/utilization').mean()) / 100.0
            elif 'intel/psutil/net/utilization_percentage' in util:
                res[node_name]['network'] = (util.get(
                    'intel/psutil/net/utilization_percentage').mean()) / 100.0

            # special handling of cpu, disk & network utilization if node is a machine
            if InfoGraphNode.node_is_machine(node):
                # mean from all cpu columns
                cpu_util = InfoGraphNode.get_compute_utilization(node)
                cpu_util['total'] = [
                    sum(row) / len(row) for index, row in cpu_util.iterrows()
                ]
                res[node_name]['compute'] = cpu_util['total'].mean() / 100
                # mean from all disk columns
                disk_util = InfoGraphNode.get_disk_utilization(node)
                if disk_util.empty:
                    res[node_name]['disk'] = 0.0
                else:
                    disk_util['total'] = [
                        sum(row) / len(row)
                        for index, row in disk_util.iterrows()
                    ]
                    res[node_name]['disk'] = disk_util['total'].mean() / 100
                # mean from all nic columns
                net_util = InfoGraphNode.get_network_utilization(node)
                if net_util.empty:
                    res[node_name]['network'] = 0.0
                else:
                    net_util['total'] = [
                        sum(row) / len(row)
                        for index, row in net_util.iterrows()
                    ]
                    res[node_name]['network'] = net_util['total'].mean() / 100
                # custom metric

            if InfoGraphNode.get_type(
                    node) == InfoGraphNodeType.DOCKER_CONTAINER:
                node_name = InfoGraphNode.get_docker_id(node)
                res[node_name] = {}
                if 'intel/docker/stats/cgroups/cpu_stats/cpu_usage/percentage' in util.columns:
                    res[node_name]['compute'] = util[
                        'intel/docker/stats/cgroups/cpu_stats/cpu_usage/percentage'].mean(
                        ) / 100
                else:
                    res[node_name]['compute'] = 0
                if 'intel/docker/stats/cgroups/memory_stats/usage/percentage' in util.columns:
                    res[node_name]['memory'] = util[
                        'intel/docker/stats/cgroups/memory_stats/usage/percentage'].mean(
                        ) / 100
                else:
                    res[node_name]['memory'] = 0
                if 'intel/docker/stats/network/utilization_percentage' in util.columns:
                    res[node_name]['network'] = util[
                        'intel/docker/stats/network/utilization_percentage'].mean(
                        ) / 100
                else:
                    res[node_name]['network'] = 0
                if 'intel/docker/stats/cgroups/blkio_stats/io_time_recursive/percentage' in util.columns:
                    res[node_name]['disk'] = util[
                        'intel/docker/stats/cgroups/blkio_stats/io_time_recursive/percentage'].mean(
                        ) / 100
                else:
                    res[node_name]['disk'] = 0
        return res
コード例 #6
0
    def compute_node_resources(annotated_subgraph, hostname=None):
        """
        This is a type of fingerprint from the infrastructure perspective
        """
        # TODO: Validate graph
        data = dict()
        statistics = dict()

        # Calculation of the fingerprint on top of the virtual resources
        local_subgraph = annotated_subgraph.copy()

        for node in local_subgraph.nodes(data=True):
            layer = InfoGraphNode.get_layer(node)
            if layer == InfoGraphNodeLayer.VIRTUAL:
                continue
            if layer == InfoGraphNodeLayer.SERVICE:
                continue
            type = InfoGraphNode.get_type(node)
            if type == 'core':
                continue

            # If hostname has been specified, need to take into account only
            # nodes that are related to the specific host
            attrs = InfoGraphNode.get_attributes(node)
            allocation = attrs['allocation'] if 'allocation' in attrs \
                else None
            if hostname and not hostname == allocation:
                continue

            name = InfoGraphNode.get_name(node)
            statistics[name] = {
                'mean': 0,
                'median': 0,
                'min': 0,
                'max': 0,
                'var': 0,
                'std_dev': 0
            }
            utilization = InfoGraphNode.get_utilization(node)
            try:
                utilization = utilization.drop('timestamp', 1)
            except ValueError:
                utilization = InfoGraphNode.get_utilization(node)
            data[name] = utilization

            if not data[name].empty:
                mean = data[name]['utilization'].mean()
                median = (data[name]['utilization']).median()
                min = data[name]['utilization'].min()
                maximum = data[name]['utilization'].max()
                var = data[name]['utilization'].var()
                std_dev = math.sqrt(var)
            else:
                mean = 0
                median = 0
                min = 0
                maximum = 0
                var = 0
                std_dev = 0
            statistics[name] = \
                {'mean': mean,
                 'median': median,
                 'min': min,
                 'max': maximum,
                 'var': var,
                 'std_dev': std_dev}

        return [data, statistics]
コード例 #7
0
    def compute_node(annotated_subgraph, hostname=None):
        """
        This is a type of fingerprint from the infrastructure perspective
        """
        # TODO: Validate graph
        data = dict()
        statistics = dict()
        compute = InfoGraphNodeCategory.COMPUTE
        data[compute] = pandas.DataFrame()
        statistics[compute] = {
            'mean': 0,
            'median': 0,
            'min': 0,
            'max': 0,
            'var': 0,
            'std_dev': 0
        }
        network = InfoGraphNodeCategory.NETWORK
        data[network] = pandas.DataFrame()
        statistics[network] = {
            'mean': 0,
            'median': 0,
            'min': 0,
            'max': 0,
            'var': 0,
            'std_dev': 0
        }
        storage = InfoGraphNodeCategory.STORAGE
        data[storage] = pandas.DataFrame()
        statistics[storage] = {
            'mean': 0,
            'median': 0,
            'min': 0,
            'max': 0,
            'var': 0,
            'std_dev': 0
        }
        memory = InfoGraphNodeCategory.MEMORY
        data[memory] = pandas.DataFrame()
        statistics[memory] = {
            'mean': 0,
            'median': 0,
            'min': 0,
            'max': 0,
            'var': 0,
            'std_dev': 0
        }

        # Calculation of the fingerprint on top of the virtual resources
        local_subgraph = annotated_subgraph.copy()

        for node in local_subgraph.nodes(data=True):
            layer = InfoGraphNode.get_layer(node)
            is_machine = InfoGraphNode.node_is_machine(node)
            if is_machine:
                continue
            if layer == InfoGraphNodeLayer.VIRTUAL:
                continue
            if layer == InfoGraphNodeLayer.SERVICE:
                continue
            # If hostname has been specified, need to take into account only
            # nodes that are related to the specific host
            attrs = InfoGraphNode.get_attributes(node)
            allocation = attrs['allocation'] if 'allocation' in attrs \
                else None
            if hostname and not hostname == allocation:
                continue

            category = InfoGraphNode.get_category(node)
            utilization = InfoGraphNode.get_utilization(node)
            try:
                utilization = utilization.drop('timestamp', 1)
            except ValueError:
                utilization = InfoGraphNode.get_utilization(node)
            data[category] = pandas.concat([data[category], utilization])

        for category in statistics:
            if not data[category].empty:
                mean = data[category]['utilization'].mean()
                median = (data[category]['utilization']).median()
                min = data[category]['utilization'].min()
                maximum = data[category]['utilization'].max()
                var = data[category]['utilization'].var()
                std_dev = math.sqrt(var)
            else:
                mean = 0
                median = 0
                min = 0
                maximum = 0
                var = 0
                std_dev = 0
            statistics[category] = \
                {'mean': mean,
                 'median': median,
                 'min': min,
                 'max': maximum,
                 'var': var,
                 'std_dev': std_dev}

        return [data, statistics]