def load_predefined_recognizers(self): # TODO: Change the code to dynamic loading - # Task #598: Support loading of the pre-defined recognizers # from the given path. # Currently this is not integrated into the init method to speed up # loading time if these are not actually needed (SpaCy for example) is # time consuming to load self.recognizers.extend([ CreditCardRecognizer(), DomainRecognizer(), EmailRecognizer(), IbanRecognizer(), IpRecognizer(), NhsRecognizer(), UsBankRecognizer(), UsLicenseRecognizer(), UsItinRecognizer(), UsPassportRecognizer(), UsPhoneRecognizer(), UsSsnRecognizer() ]) # Okera addition if 'PRESIDIO_DISABLE_ML' in os.environ and \ os.environ['PRESIDIO_DISABLE_ML'] == 'true': logging.info("Disabling ML recognizer.") else: logging.info("Enabling ML recognizer.") self.recognizers.extend([SpacyRecognizer()])
def load_recognizers(self, path): # TODO: Change the code to dynamic loading - # Task #598: Support loading of the pre-defined recognizers # from the given path. self.recognizers.extend( [CreditCardRecognizer(), UsPhoneRecognizer(), DomainRecognizer()])
def load_predefined_recognizers(self): # TODO: Change the code to dynamic loading - # Task #598: Support loading of the pre-defined recognizers # from the given path. # Currently this is not integrated into the init method to speed up # loading time if these are not actually needed (SpaCy for example) is # time consuming to load self.recognizers.extend([ CreditCardRecognizer(), CryptoRecognizer(), DomainRecognizer(), EmailRecognizer(), IbanRecognizer(), IpRecognizer(), NhsRecognizer(), UsBankRecognizer(), UsLicenseRecognizer(), UsItinRecognizer(), UsPassportRecognizer(), UsPhoneRecognizer(), UsSsnRecognizer(), SpacyRecognizer() ])
from unittest import TestCase import os import pytest from analyzer import PatternRecognizer, Pattern from analyzer.predefined_recognizers import CreditCardRecognizer, \ UsPhoneRecognizer, DomainRecognizer, UsItinRecognizer, \ UsLicenseRecognizer, UsBankRecognizer, UsPassportRecognizer, \ IpRecognizer, UsSsnRecognizer from analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts ip_recognizer = IpRecognizer() us_ssn_recognizer = UsSsnRecognizer() phone_recognizer = UsPhoneRecognizer() us_itin_recognizer = UsItinRecognizer() us_license_recognizer = UsLicenseRecognizer() us_bank_recognizer = UsBankRecognizer() us_passport_recognizer = UsPassportRecognizer() @pytest.fixture(scope="class") def sentences_with_context(request): """ Loads up a group of sentences with relevant context words """ path = os.path.dirname(__file__) + '/data/context_sentences_tests.txt' f = open(path, "r") if not f.mode == 'r': return [] content = f.read()