コード例 #1
0
    def _load_csv(self, csv_file):
        """
        Load simulation data from CSV file and return a numpy array.
        """
        if csv_file is None:
            return None

        df = pd.read_csv(csv_file)

        if df.isnull().values.any():
            raise ValueError("CSV file contains missing values. Please check data consistency.")

        data = df.to_numpy()

        if data.ndim != 2:
            raise ValueError("Data from CSV is not 2-dimensional (time versus variable)")
        if data.shape[0] < 2:
            logger.warning("CSV data does not contain more than one time step.")
        if data.shape[1] < (self.system.dae.m + self.system.dae.n):
            logger.warning("CSV data contains fewer variables than required.")
            logger.warning("Check if the CSV data file is generated from the test case.")

        # set start and end times from data
        self.config.t0 = data[0, 0]
        self.config.tf = data[-1, 0]

        return data
コード例 #2
0
    def list2array(self):
        """
        Set internal storage for timeseries data.

        Open file and read data into internal storage.
        """

        # TODO: timeseries file must exist for setup to pass. Consider moving
        # the file reading to a later stage so that adding sheets to xlsx file can work
        # without the file existing.

        Model.list2array(self)

        # read and store data
        for ii in range(self.n):
            idx = self.idx.v[ii]
            path = self.path.v[ii]
            sheet = self.sheet.v[ii]

            if not os.path.isabs(path):
                path = os.path.join(self.system.files.case_path, path)

            if not os.path.exists(path):
                raise FileNotFoundError('<%s idx=%s>: File not found: "%s"',
                                        self.class_name, idx, path)

            # --- read supported formats ---
            if path.endswith("xlsx") or path.endswith("xls"):
                df = self._read_excel(path, sheet, idx)
            elif path.endswith("csv"):
                df = pd.read_csv(path)

            for field in self.fields.v[ii]:
                if field not in df.columns:
                    raise ValueError(
                        'Field {} not found in timeseries data'.format(field))

            self._data[idx] = df
            logger.info('Read timeseries data from "%s"', path)