コード例 #1
0
def mmdnn_to_annette(args):
    """Convert MMDNN graph .pb-File to annette json format and stores to Annette graph std path.

    Args:
      network name (str): network name 

    Returns:
      :obj:`annette.AnnetteGraph`: AnnetteGraph object
    """
    graphfile = get_database( 'graphs', 'mmdnn', args.network+'.pb')
    if(os.path.exists(graphfile)):
        print("Graph found")
    elif(os.path.exists(args.network)):
        print("Graph-file detected")
        # extract network name
        args.network = os.path.split(args.network)[1].split('.pb')[0]
        graphfile = get_database( 'graphs', 'mmdnn', args.network+'.pb')
    else:
        logging.error("File not found")

    weightfile = None
    mmdnn_graph = MMGraph(graphfile, weightfile)
    annette_graph = mmdnn_graph.convert_to_annette(args.network)
    json_file = get_database( 'graphs', 'annette',
                     annette_graph.model_spec["name"]+'.json')
    annette_graph.to_json(json_file)

    return annette_graph
コード例 #2
0
def estimate(args):
    """Estimate example function

    Args:
      network name (str): network name 

    Returns:
      float: estimated time in ms 
    """
    model = AnnetteGraph(
        args.network, get_database('graphs', 'annette',
                                   args.network + '.json'))

    if args.mapping != "none":
        opt = Mapping_model.from_json(
            get_database('models', 'mapping', args.mapping + '.json'))
        opt.run_optimization(model)

    # LOAD MODELS
    mod = Layer_model.from_json(
        get_database('models', 'layer', args.layer + '.json'))

    # APPLY ESTIMATION
    res = mod.estimate_model(model)
    write_result(args.network, res, args.mapping, args.layer,
                 get_database('results'))

    return res[0], res[2]
コード例 #3
0
def test_read_ncs2_report(network="benchmark_average_counters_report"):
    report_file = get_database('benchmarks', 'tmp', network + '.csv')
    ncs2.read_report(report_file)
    annette_report = ncs2.r2a(report_file)
    annette_report.to_pickle(
        get_database('benchmarks', 'tmp', 'annette_bench1.pkl'))

    assert True
コード例 #4
0
def test_ONNXGraph_to_annette(network="cf_resnet50", inputs=None):
    network_file = get_database('graphs', 'onnx', network + '.onnx')
    onnx_network = graph.ONNXGraph(network_file)
    annette_graph = onnx_network.onnx_to_annette(network, inputs)
    json_file = get_database('graphs', 'annette',
                             annette_graph.model_spec["name"] + '.json')
    annette_graph.to_json(json_file)

    assert True
    return 0
コード例 #5
0
def test_matcher(network='annette_bench3', shape=None):
    gen = generator.Graph_generator(network)
    gen.add_configfile("config_v6.csv")
    gen.generate_graph_from_config(401)
    test_net = get_database('graphs', 'tf', network + '.pb')
    #ncs2.optimize_network(test_net, source_fw = "tf", network = network, image = shape , input_node = "data", save_folder = get_database('benchmarks','tmp'))
    #test_net = get_database('benchmarks','tmp',network+'.xml')
    #not running network
    #ncs2.run_network(test_net, report_dir = get_database('benchmarks','tmp'))
    test_report = get_database('benchmarks', 'tmp',
                               'benchmark_average_counters_report.csv')
    ncs2.read_report(test_report)
    print(gen.graph.model_spec)
コード例 #6
0
    def tf_export_to_pb(self, output_node, save_path=None):
        # Collect default graph information
        g = tf.get_default_graph()

        with tf.Session() as sess:
            # Initialize the variables
            sess.run(tf.global_variables_initializer())
            g = g.as_graph_def(add_shapes=True)

            # Convert variables to constants until the "fully_conn_1/Softmax" node
            frozen_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, g, output_node)

            print("load graph")
            graph_nodes = [n for n in frozen_graph_def.node]
            names = []
            for t in graph_nodes:
                if not ("Variable" in t.name or "BiasAdd" in t.name):
                    names.append(t.name.replace("/", "_").replace("-", "_"))
            print(names)

        # Write the intermediate representation of the graph to .pb file
        if save_path:
            net_file = save_path
        else:
            net_file = get_database('graphs', 'tf',
                                    self.graph.model_spec['name'] + ".pb")
        print(net_file)
        with open(os.path.join(net_file), 'wb') as f:
            graph_string = (frozen_graph_def.SerializeToString())
            f.write(graph_string)
コード例 #7
0
    def load_estimator(self, est_model=None, est_dict=None):
        if est_model != None:
            self.est_model = pickle.load(open(get_database(est_model), 'rb'))
            self.desc['est_model'] = est_model
        else:
            return False

        self.est_dict = est_dict
        self.desc['est_dict'] = est_dict
        return True
コード例 #8
0
    def load_model(self, est_model=None, conv_dict=None):
        if est_model != None:
            self.est_model = pickle.load(open(get_database(est_model), 'rb'))
            self.desc['est_model'] = est_model
        else:
            print("No Model to be loaded")
            pass

        self.conv_dict = conv_dict
        self.desc['conv_dict'] = conv_dict
        print("Conversion Dict: ")
        print(self.conv_dict)
コード例 #9
0
def generate_tf_model(graph):
    """generates Tensorflow 2 graph out of ANNETTE graph description
    and stores to benchmark/graphs/tf2/ directory

    Args:
        graph :obj:`annette.graph.AnnetteGraph`: annette graph description to generate the tf2 graph from
    """

    # generate tensorflow model and export to out_file

    # with __dict__ we can see the content of the class
    logging.debug(graph.__dict__)

    # model_spec contains some info about the model
    for key, value in graph.model_spec.items():
        logging.debug(key)
        logging.debug(value)

    network_name = graph.model_spec['name']

    filename = get_database('benchmark', 'graphs', 'tf2', network_name + '.pb')
    logging.debug("Stored to: %s" % filename)
コード例 #10
0
 def add_configfile(self, configfile):
     self.config = pd.read_csv(
         get_database('benchmarks', 'config', configfile))
     print(self.config)
コード例 #11
0
 def __init__(self, network):
     #load graphstruct
     json_file = get_database('graphs', 'annette', network + '.json')
     self.graph = AnnetteGraph(network, json_file)
     print(self.graph)