コード例 #1
0
    def load_data_for_predict(self, ann_dir, ignore_mappings=[], ignore_context=False,
                              separate_by_label=False, full_text_dir=None):
        """
        load data for prediction - no ground truth exists
        :param ann_dir:
        :param ignore_mappings:
        :param ignore_context:
        :param separate_by_label:
        :param full_text_dir:
        :return:
        """
        if ignore_context:
            logging.info('doing learning without considering contextual info')

        cm = self.concept_mapping
        file_keys = [f[:f.rfind('.')] for f in listdir(ann_dir) if isfile(join(ann_dir, f))]
        lbl2data = {}
        for fk in file_keys:
            cr = CustomisedRecoginiser(join(ann_dir, '%s.json' % fk), cm)
            fk = fk.replace('se_ann_', '')
            if full_text_dir is not None:
                cr.full_text_folder = full_text_dir
            LabelModel.read_one_ann_doc(self, cr, fk, lbl2data=lbl2data,
                                        ignore_mappings=ignore_mappings, ignore_context=ignore_context,
                                        separate_by_label=separate_by_label)
        return {'lbl2data': lbl2data, 'files': file_keys}
コード例 #2
0
 def collect_dimensions(self, ann_dir):
     cm = self.concept_mapping
     file_keys = [
         f.split('.')[0] for f in listdir(ann_dir)
         if isfile(join(ann_dir, f))
     ]
     # collect dimension labels
     for fk in file_keys:
         cr = CustomisedRecoginiser(join(ann_dir, '%s.json' % fk), cm)
         t = self.label.replace('neg_', '')
         anns = cr.get_anns_by_label(t)
         neg_anns = cr.get_anns_by_label('neg_' + t)
         for a in anns + neg_anns:
             self.add_label_dimension_by_annotation(a)
             # self.add_context_dimension_by_annotation(a)
             if (a.negation != 'Negated' and self.label.startswith('neg_')) or \
                     (a.negation == 'Negated' and not self.label.startswith('neg_')):
                 continue
             sanns = cr.get_same_sentence_anns(a)
             context_anns = [] + sanns['umls'] + sanns['phenotype']
             # collect cui labels
             for u in sanns['umls']:
                 self._cui2label[u.cui] = u.pref
             for c in context_anns:
                 self.add_context_dimension_by_annotation(c)
コード例 #3
0
    def assess_label_quality(self,
                             ann_dir,
                             gold_dir,
                             separate_by_label=True,
                             ignore_context=True):
        if ignore_context:
            logging.info('doing learning without considering contextual info')
        # print self.get_top_tfidf_dimensions(self.max_dimensions)
        cm = self.concept_mapping
        file_keys = [
            f.split('.')[0] for f in listdir(ann_dir)
            if isfile(join(ann_dir, f))
        ]
        label_type = self.label.replace('neg_', '')
        query_label_perform = {}
        for fk in file_keys:
            cr = CustomisedRecoginiser(join(ann_dir, '%s.json' % fk), cm)
            if not isfile(join(gold_dir, '%s-ann.xml' % fk)):
                continue
            gd = EDIRDoc(join(gold_dir, '%s-ann.xml' % fk))

            not_matched_gds = []
            for e in gd.get_ess_entities():
                if (ignore_context and e.label.replace('neg_', '') == label_type) \
                        or (not ignore_context and e.label == self.label):
                    not_matched_gds.append(e.id)
            anns = cr.get_anns_by_label(self.label, no_context=ignore_context)
            for a in anns:
                multiple_true_positives = 0
                matched = False
                for g in gd.get_ess_entities():
                    if g.id in not_matched_gds:
                        gt = g.label.replace('neg_', '')
                        if g.overlap(a) and (
                            (g.label == self.label and not ignore_context) or
                            (ignore_context and gt == label_type)):
                            if matched:
                                multiple_true_positives += 1
                            matched = True
                            not_matched_gds.remove(g.id)

                if separate_by_label:
                    lbl = LabelModel.get_ann_query_label(a)
                else:
                    lbl = 'united'
                ql = lbl
                if ql not in query_label_perform:
                    query_label_perform[ql] = {'c': 0, 'w': 0}
                if matched:
                    query_label_perform[ql]['c'] += 1
                else:
                    query_label_perform[ql]['w'] += 1
        lbls = [(l, 1.0 * query_label_perform[l]['c'] /
                 (query_label_perform[l]['c'] + query_label_perform[l]['w']),
                 query_label_perform[l]['c'], query_label_perform[l]['w'])
                for l in query_label_perform]
        return sorted(lbls, key=lambda x: x[1])
コード例 #4
0
def populate_validation_results():
    label_dir = _gold_dir
    ann_dir = _ann_dir

    label2performances = {}
    file_keys = [f.split('.')[0] for f in listdir(ann_dir) if isfile(join(ann_dir, f))]
    for fk in file_keys:
        populate_semehr_results(label_dir, ann_dir, fk, label2performances, using_combined=False)
    CustomisedRecoginiser.print_performances(label2performances)
コード例 #5
0
def predict_doc_phenotypes(doc_key,
                           doc_anns,
                           doc_text,
                           model_factory,
                           concept_mapping,
                           ignore_mappings=[],
                           mention_pattern=None):
    """
    load a document and do all phenotype predictions in one go
    this is designed for large amounts of documents to be loaded, for example, from databases
    :param doc_key:
    :param doc_anns:
    :param doc_text:
    :param model_factory:
    :param concept_mapping:
    :param ignore_mappings:
    :param mention_pattern:
    :return:
    """
    cr = CustomisedRecoginiser(doc_key,
                               concept_mapping=concept_mapping,
                               ann_doc=doc_anns)
    cr.full_text = doc_text
    p2count = {}
    total = 0
    for p in model_factory.phenotypes:
        lm = model_factory.get_model_by_phenotype(p)
        if lm is None:
            logging.info('phenotype %s not found' % p)
            continue
        lbl2data = {}
        LabelModel.read_one_ann_doc(lm,
                                    cr,
                                    doc_key,
                                    lbl2data=lbl2data,
                                    ignore_mappings=ignore_mappings,
                                    ignore_context=True,
                                    separate_by_label=True)
        doc2predicted = {}
        label_model_predict(lm,
                            model_factory.model_file_pattern(p),
                            lbl2data,
                            doc2predicted,
                            mention_pattern=mention_pattern,
                            mention_prediction_param=cr)
        if doc_key in doc2predicted:
            p2count[p] = {
                'freq': len(doc2predicted[doc_key]),
                'cui2freq': collect_phenotype_concept(doc2predicted[doc_key])
            }
            total += 1
    return p2count if total > 0 else None
コード例 #6
0
def do_learn_exp(viz_file, num_dimensions=[20], ignore_context=False, separate_by_label=False, conll_output_file=None,
                 eHostGD=False, mention_pattern=None):
    results = {}
    id2conll = {}
    result_str = ''
    for lbl in _labels:
        logging.info('working on [%s]' % lbl)
        _learning_model_file = _learning_model_dir + '/%s.lm' % lbl
        _ml_model_file_ptn = _learning_model_dir + '/' + lbl + '_%s_DT.model'
        _pca_model_file = None
        pca_dim = None
        max_dimensions = num_dimensions

        t = lbl.replace('neg_', '')
        ignore_mappings = _ignore_mappings[t] if t in _ignore_mappings else []
        # remove previous model files logging.debug('removing previously learnt models...') for f in [f for f in
        # listdir(_learning_model_dir) if isfile(join(_learning_model_dir, f)) and f.endswith('.model')]: remove(
        # join(_learning_model_dir, f))
        for dim in max_dimensions:
            logging.info('dimension setting: %s' % dim)
            learn_prediction_model(lbl,
                                   ann_dir=_ann_dir,
                                   gold_dir=_gold_dir,
                                   ml_model_file_ptn=_ml_model_file_ptn,
                                   model_dir=_learning_model_dir,
                                   pca_dim=pca_dim,
                                   pca_model_file=_pca_model_file,
                                   max_dimension=dim,
                                   ignore_mappings=ignore_mappings,
                                   viz_file=viz_file,
                                   ignore_context=ignore_context,
                                   separate_by_label=separate_by_label,
                                   full_text_dir=_gold_text_dir,
                                   eHostGD=eHostGD)
            logging.debug('bad labels: %s' % ignore_mappings)
            pl = '%s dim[%s]' % (lbl, dim)
            performance = LabelPerformance(pl)
            results[pl] = performance
            predict_label(_learning_model_file,
                          _test_ann_dir,
                          _test_gold_dir,
                          _ml_model_file_ptn,
                          performance,
                          pca_model_file=_pca_model_file,
                          max_dimension=dim,
                          ignore_mappings=ignore_mappings,
                          ignore_context=ignore_context,
                          separate_by_label=separate_by_label,
                          full_text_dir=_test_text_dir,
                          file_pattern=_gold_file_pattern,
                          id2conll=id2conll,
                          label_whitelist=_labels,
                          eHostGD=eHostGD, mention_pattern=mention_pattern)
        result_str = CustomisedRecoginiser.print_performances(results)
    return result_str
コード例 #7
0
def populate_semehr_results(label_dir, ann_dir, file_key,
                            label2performances, using_combined=False):
    label_file = '%s-ann.xml' % file_key
    ann_file = '%s.json' % file_key
    print(join(label_dir, label_file))
    if not isfile(join(label_dir, label_file)):
        return

    ed = EDIRDoc(join(label_dir, label_file))
    cm = Concept2Mapping(_concept_mapping)
    cr = CustomisedRecoginiser(join(ann_dir, ann_file), cm)
    if using_combined:
        cr.validate_combined_performance(ed.get_ess_entities(), label2performances)
    else:
        cr.validate_mapped_performance(ed.get_ess_entities(), label2performances)
コード例 #8
0
    def load_data(self,
                  ann_dir,
                  gold_dir,
                  verbose=True,
                  ignore_mappings=[],
                  ignore_context=False,
                  separate_by_label=False,
                  ful_text_dir=None,
                  eHostGD=False,
                  annotated_anns={}):
        """

        :param ann_dir:
        :param gold_dir:
        :param verbose:
        :param ignore_mappings:
        :param ignore_context:
        :param separate_by_label:
        :param ful_text_dir:
        :param eHostGD:
        :param annotated_anns: NB: this is for labelling settings where only partial data is annotated on
        the documents. Therefore, we need to filter out those not assessed by the annotators to avoid kill some
        true positives (those are correct but not assessed by annotators)
        :return:
        """
        if ignore_context:
            logging.info('doing learning without considering contextual info')
        # print self.get_top_tfidf_dimensions(self.max_dimensions)
        cm = self.concept_mapping
        file_keys = [
            f[:f.rfind('.')] for f in listdir(ann_dir)
            if isfile(join(ann_dir, f))
        ]
        lbl2data = {}
        false_negatives = 0
        lbl2tps = {}
        label_type = self.label.replace('neg_', '')
        query_label_perform = {}
        for fk in file_keys:
            cr = CustomisedRecoginiser(join(ann_dir, '%s.json' % fk), cm)
            fk = fk.replace('se_ann_', '')
            if ful_text_dir is not None:
                cr.full_text_folder = ful_text_dir
            if eHostGD:
                if not isfile(join(gold_dir, '%s.txt.knowtator.xml' % fk)):
                    continue
                # logging.debug('using GD file %s' % join(gold_dir, '%s.txt.knowtator.xml' % fk))
                gd = eHostGenedDoc(join(gold_dir, '%s.txt.knowtator.xml' % fk))
            else:
                if not isfile(join(gold_dir, '%s-ann.xml' % fk)):
                    continue
                logging.debug('using GD file %s' %
                              join(gold_dir, '%s-ann.xml' % fk))
                gd = EDIRDoc(join(gold_dir, '%s-ann.xml' % fk))

            # re-segement sentences
            # cr.re_segment_sentences(fk)
            # cr.relocate_all_anns(fk)
            # gd.relocate_anns(cr.get_full_text(fk))

            not_matched_gds = []
            for e in gd.get_ess_entities():
                if (ignore_context and e.label.replace('neg_', '') == label_type) \
                        or (not ignore_context and e.label == self.label):
                    not_matched_gds.append(e.id)

            anns = cr.get_anns_by_label(self.label,
                                        ignore_mappings=ignore_mappings,
                                        no_context=ignore_context)
            if len(annotated_anns) > 0:
                if '%s.txt' % fk not in annotated_anns:
                    continue
                kept_anns = []
                for a in anns:
                    for aa in annotated_anns['%s.txt' % fk]:
                        if int(aa['s']) == a.start and int(aa['e']) == a.end:
                            kept_anns.append(a)
                anns = kept_anns
            for a in anns:
                logging.debug('%s, %s, %s' % (a.str, a.start, a.end))
                multiple_true_positives = 0
                t2anns = cr.get_prior_anns(a)
                # if len(t2anns['umls']) + len(t2anns['phenotype']) == 0:
                #     t2anns = cr.get_prior_anns(a, contenxt_depth=-2)
                context_anns = [] + t2anns['umls'] + t2anns['phenotype'] + \
                               cr.get_context_words(a, fk)
                # context_anns = cr.get_context_words(a, fk)
                matched = False
                for g in gd.get_ess_entities():
                    if g.id in not_matched_gds:
                        gt = g.label.replace('neg_', '')
                        if g.overlap(a) and (
                            (g.label == self.label and not ignore_context) or
                            (ignore_context and gt == label_type)):
                            if matched:
                                multiple_true_positives += 1
                            matched = True
                            not_matched_gds.remove(g.id)
                if verbose:
                    if not matched:
                        logging.debug(
                            '%s %s %s' %
                            ('!',
                             self.get_ann_dim_label(a) + ' // ' + ' | '.join(
                                 self.get_ann_dim_label(a, generalise=True)
                                 for a in context_anns), fk))
                    else:
                        logging.debug(
                            '%s %s %s' %
                            ('R',
                             self.get_ann_dim_label(a) + ' // ' + ' | '.join(
                                 self.get_ann_dim_label(a, generalise=True)
                                 for a in context_anns), fk))

                lbl = LabelModel.get_label_specific_data(
                    self,
                    lbl2data,
                    a,
                    context_anns,
                    fk,
                    cr,
                    separate_by_label=separate_by_label)

                lbl2data[lbl]['multiple_tps'] += multiple_true_positives
                Y = lbl2data[lbl]['Y']
                Y.append([1 if matched else 0])
                ql = lbl
                if ql not in query_label_perform:
                    query_label_perform[ql] = {'c': 0, 'w': 0}
                if matched:
                    query_label_perform[ql]['c'] += 1
                else:
                    query_label_perform[ql]['w'] += 1
            false_negatives += len(not_matched_gds)

            missed = None
            for g in gd.get_ess_entities():
                if g.id in not_matched_gds:
                    missed = g
                    logging.debug('\t'.join([
                        'M', g.str,
                        str(g.negated),
                        str(g.start),
                        str(g.end),
                        join(gold_dir, '%s-ann.xml' % fk)
                    ]))
            # if len(not_matched_gds) > 0:
            #     print not_matched_gds
            #     for a in anns:
            #         logging.debug(a.str, a.start, a.end, missed.overlap(a))
        bad_labels = []
        for ql in query_label_perform:
            p = query_label_perform[ql]
            if p['c'] == 0 or (1.0 * p['w'] / p['c'] < 0.05):
                bad_labels.append(ql)
        return {
            'lbl2data': lbl2data,
            'fns': false_negatives,
            'bad_labels': bad_labels,
            'files': file_keys
        }
コード例 #9
0
    def collect_tfidf_dimensions(self,
                                 ann_dir,
                                 gold_dir,
                                 ignore_context=False,
                                 separate_by_label=False,
                                 full_text_dir=None,
                                 eHostGD=False):
        cm = self.concept_mapping
        file_keys = [
            f[:f.rfind('.')] for f in listdir(ann_dir)
            if isfile(join(ann_dir, f))
        ]
        # collect dimension labels
        tp_freq = 0
        fp_freq = 0
        label_type = self.label.replace('neg_', '')
        fn_freq = 0
        for fk in file_keys:
            cr = CustomisedRecoginiser(join(ann_dir, '%s.json' % fk), cm)
            fk = fk.replace('se_ann_', '')
            if full_text_dir is not None:
                cr.full_text_folder = full_text_dir
            if eHostGD:
                if not isfile(join(gold_dir, '%s.txt.knowtator.xml' % fk)):
                    continue
                gd = eHostGenedDoc(join(gold_dir, '%s.txt.knowtator.xml' % fk))
            else:
                if not isfile(join(gold_dir, '%s-ann.xml' % fk)):
                    continue
                gd = EDIRDoc(join(gold_dir, '%s-ann.xml' % fk))
            t = self.label.replace('neg_', '')
            anns = cr.get_anns_by_label(t)
            neg_anns = cr.get_anns_by_label('neg_' + t)

            # re-segement sentences
            # cr.re_segment_sentences(fk)
            # cr.relocate_all_anns(fk)
            # gd.relocate_anns(cr.get_full_text(fk))

            not_matched_gds = []
            for e in gd.get_ess_entities():
                if (ignore_context and e.label.replace('neg_', '') == label_type) \
                        or (not ignore_context and e.label == self.label):
                    not_matched_gds.append(e.id)
            for a in anns + neg_anns:
                # self.add_context_dimension_by_annotation(a)
                self.add_label_dimension_by_annotation(a)
                # if (not ignore_context) and ((a.negation != 'Negated' and self.label.startswith('neg_')) or \
                #         (a.negation == 'Negated' and not self.label.startswith('neg_'))):
                #     logging.info('skipped because context')
                #     continue

                matched = False
                for g in gd.get_ess_entities():
                    if g.id in not_matched_gds:
                        gt = g.label.replace('neg_', '')
                        if g.overlap(a) and (
                            (g.label == self.label and not ignore_context) or
                            (ignore_context and gt == label_type)):
                            matched = True
                            tp_freq += 1
                            not_matched_gds.remove(g.id)
                if not matched:
                    fp_freq += 1

                sanns = cr.get_prior_anns(a, contenxt_depth=-1)
                context_anns = [] + sanns['umls'] + sanns[
                    'phenotype'] + cr.get_context_words(a, fk)
                # context_anns =  cr.get_context_words(a, fk)
                # collect cui labels
                for u in sanns['umls']:
                    self._cui2label[u.cui] = u.pref
                for c in context_anns:
                    self.add_context_dimension_by_annotation(
                        c,
                        tp=True if matched else None,
                        fp=True if not matched else None,
                        lbl='united' if not separate_by_label else
                        LabelModel.get_ann_query_label(a))
            fn_freq += len(not_matched_gds)
        self._tps = tp_freq
        self._fps = fp_freq
        logging.debug('tp: %s, fp: %s, fn: %s' % (tp_freq, fp_freq, fn_freq))
コード例 #10
0
def predict_label(model_file, test_ann_dir, test_gold_dir, ml_model_file_ptn, performance,
                  pca_model_file=None,
                  max_dimension=None,
                  ignore_mappings=[],
                  ignore_context=False,
                  separate_by_label=False,
                  full_text_dir=None,
                  file_pattern='%s-ann.xml',
                  id2conll=None,
                  label_whitelist=None,
                  eHostGD=False, mention_pattern=None):
    lm = LabelModel.deserialise(model_file)
    lm.max_dimensions = max_dimension
    data = lm.load_data(test_ann_dir, test_gold_dir, ignore_mappings=ignore_mappings, ignore_context=ignore_context,
                        separate_by_label=separate_by_label, verbose=False, ful_text_dir=full_text_dir, eHostGD=eHostGD,
                        annotated_anns=_annotated_anns)

    files = data['files']
    for d in files:
        d = d.replace('se_ann_', '')
        if d not in id2conll:
            id2conll[d] = ConllDoc(join(test_gold_dir, file_pattern % d))
            if label_whitelist is not None:
                id2conll[d].set_label_white_list(label_whitelist)
    lbl2performances = {}
    for lbl in data['lbl2data']:
        this_performance = LabelPerformance(lbl)
        X = data['lbl2data'][lbl]['X']
        Y = data['lbl2data'][lbl]['Y']
        mtp = data['lbl2data'][lbl]['multiple_tps']
        doc_anns = data['lbl2data'][lbl]['doc_anns']
        mp_predicted = None
        if mention_pattern is not None:
            mp_predicted = mention_pattern.predict(doc_anns)
        if lbl in lm.rare_labels:
            logging.info('%s to be predicted using %s' % (lbl, lm.rare_labels[lbl]))
            PhenomeLearners.predict_use_simple_stats(
                lm.rare_labels[lbl], Y, mtp,
                performance, separate_performance=this_performance,
                id2conll=id2conll, doc_anns=doc_anns, file_pattern=file_pattern,
                doc_folder=test_gold_dir,
                label_whitelist=label_whitelist, mp_predicted=mp_predicted
            )
        else:
            if len(X) > 0:
                logging.debug('predict data: %s, dimensions %s, insts %s' % (lbl, len(X[0]), len(X)))
            bc = lm.get_binary_cluster_classifier(lbl)
            if bc is not None:
                complementary_classifiers = []
                for l in lm.cluster_classifier_dict:
                    if l != lbl:
                        complementary_classifiers.append(lm.cluster_classifier_dict[l])
                for idx in range(len(X)):
                    logging.debug(
                        '%s => %s' % (bc.classify(X[idx], complementary_classifiers=complementary_classifiers), Y[idx]))
            PhenomeLearners.predict_use_model(X, Y, 0, mtp, ml_model_file_ptn % escape_lable_to_filename(lbl),
                                              performance,
                                              pca_model_file=pca_model_file,
                                              separate_performance=this_performance,
                                              id2conll=id2conll, doc_anns=doc_anns, file_pattern=file_pattern,
                                              doc_folder=test_gold_dir,
                                              label_whitelist=label_whitelist, mp_predicted=mp_predicted)
        lbl2performances[lbl] = this_performance
    perform_str = CustomisedRecoginiser.print_performances(lbl2performances)
    logging.debug('missed instances: %s' % data['fns'])
    performance.increase_false_negative(data['fns'])
    return perform_str