def testiraj_anp4(): print("ANP 1 - normalizacija matricom prijelaza s fiktivnom alternativom") global U, Z checkDependencies() global anp anp = ANP(U, Z) anp.simulate(matricaPrijelaza=True, fiktivnaAlt=True) return option_end()
def testiraj_anp1(): print("ANP 1 - normalizacija zbrojem bez fiktivne alternative") global U, Z checkDependencies() global anp anp = ANP(U, Z) anp.simulate(matricaPrijelaza=False) return option_end()
def doClusterTest(usporedba, zavisnost): usp = MatricaUsporedbi(Generator.izradiMatUsporedbe(ast.literal_eval(usporedba), brojKriterija)) zav = MatricaZavisnosti(Generator.izradiMatZavisnosti(ast.literal_eval(zavisnost), brojKriterija)) anp1 = ANP(usp.weights, zav.Z) anp1.simulate() anp2 = ANP(usp.weights, zav.Z) anp2.simulate(fiktivnaAlt=True, matricaPrijelaza=False) anp3 = ANP(usp.weights, zav.Z) anp3.simulate(fiktivnaAlt=False, matricaPrijelaza=True) anp4 = ANP(usp.weights, zav.Z) anp4.simulate(matricaPrijelaza=True, fiktivnaAlt=True) k_anp1 = ANP(usp.weights, zav.Z) k_anp1.simulate(variant='klasters') k_anp2 = ANP(usp.weights, zav.Z) k_anp2.simulate(fiktivnaAlt=True, matricaPrijelaza=False, variant='klasters') k_anp3 = ANP(usp.weights, zav.Z) k_anp3.simulate(fiktivnaAlt=False, matricaPrijelaza=True, variant='klasters') k_anp4 = ANP(usp.weights, zav.Z) k_anp4.simulate(matricaPrijelaza=True, fiktivnaAlt=True, variant='klasters') dif1 = np.round(np.abs(anp1.tezine.flatten() - k_anp1.tezine.flatten()), 5) dif2 = np.round(np.abs(anp2.tezine.flatten() - k_anp2.tezine.flatten()), 5) dif3 = np.round(np.abs(anp3.tezine.flatten() - k_anp3.tezine.flatten()), 5) dif4 = np.round(np.abs(anp4.tezine.flatten() - k_anp4.tezine.flatten()), 5) avg1 = np.average(dif1) avg2 = np.average(dif2) avg3 = np.average(dif3) avg4 = np.average(dif4) return ((zavisnost, usporedba), {'ANP1': anp1.tezine.flatten(), 'ANP2': anp2.tezine.flatten(), 'ANP3': anp3.tezine.flatten(), 'ANP4': anp4.tezine.flatten(), 'K_ANP1': k_anp1.tezine.flatten(), 'K_ANP2': k_anp2.tezine.flatten(), 'K_ANP3': k_anp3.tezine.flatten(), 'K_ANP4': k_anp4.tezine.flatten(), 'diff1': dif1, 'diff2': dif2, 'diff3': dif3, 'diff4': dif4, 'avg1': avg1, 'avg2': avg2, 'avg3': avg3, 'avg4': avg4})
def doSimulation(usporedba, zavisnost): counter = 0 usp = MatricaUsporedbi( Generator.izradiMatUsporedbe(ast.literal_eval(usporedba), brojKriterija)) zav = MatricaZavisnosti( Generator.izradiMatZavisnosti(ast.literal_eval(zavisnost), brojKriterija)) anp1 = ANP(usp.weights, zav.Z) anp1.simulate() anp2 = ANP(usp.weights, zav.Z) anp2.simulate(fiktivnaAlt=True, matricaPrijelaza=False) anp3 = ANP(usp.weights, zav.Z) anp3.simulate(fiktivnaAlt=False, matricaPrijelaza=True) anp4 = ANP(usp.weights, zav.Z) anp4.simulate(matricaPrijelaza=True, fiktivnaAlt=True) snap = SNAP(usp.weights, zav.Z) snap.simulate() anp_array = np.hstack((anp1.tezine, anp2.tezine, anp3.tezine, anp4.tezine)) min_anp = np.amin(anp_array, axis=1) max_anp = np.amax(anp_array, axis=1) r1_min = min_anp * 0.9 r1_max = max_anp * 1.1 snap_elem_r1 = np.average( np.logical_and(snap.tezine_S1 <= r1_max, snap.tezine_S1 >= r1_min)) snap2_elem_r1 = np.average( np.logical_and(snap.tezine_S2 <= r1_max, snap.tezine_S2 >= r1_min)) snap3_elem_r1 = np.average( np.logical_and(snap.tezine_S3 <= r1_max, snap.tezine_S3 >= r1_min)) snap4_elem_r1 = np.average( np.logical_and(snap.tezine_S4 <= r1_max, snap.tezine_S4 >= r1_min)) snap5_elem_r1 = np.average( np.logical_and(snap.tezine_S5 <= r1_max, snap.tezine_S5 >= r1_min)) snap6_elem_r1 = np.average( np.logical_and(snap.tezine_S6 <= r1_max, snap.tezine_S6 >= r1_min)) snap7_elem_r1 = np.average( np.logical_and(snap.tezine_S7 <= r1_max, snap.tezine_S7 >= r1_min)) snap8_elem_r1 = np.average( np.logical_and(snap.tezine_S8 <= r1_max, snap.tezine_S8 >= r1_min)) snap9_elem_r1 = np.average( np.logical_and(snap.tezine_S9 <= r1_max, snap.tezine_S9 >= r1_min)) snap10_elem_r1 = np.average( np.logical_and(snap.tezine_S10 <= r1_max, snap.tezine_S10 >= r1_min)) snap11_elem_r1 = np.average( np.logical_and(snap.tezine_S11 <= r1_max, snap.tezine_S11 >= r1_min)) snap12_elem_r1 = np.average( np.logical_and(snap.tezine_S12 <= r1_max, snap.tezine_S12 >= r1_min)) r2_min = (min_anp - 0.05).clip( min=0) # ako razlika daje rezultat ispod nule, postavi na nulu r2_max = max_anp + 0.05 snap_elem_r2 = np.average( np.logical_and(snap.tezine_S1 <= r2_max, snap.tezine_S1 >= r2_min)) snap2_elem_r2 = np.average( np.logical_and(snap.tezine_S2 <= r2_max, snap.tezine_S2 >= r2_min)) snap3_elem_r2 = np.average( np.logical_and(snap.tezine_S3 <= r2_max, snap.tezine_S3 >= r2_min)) snap4_elem_r2 = np.average( np.logical_and(snap.tezine_S4 <= r2_max, snap.tezine_S4 >= r2_min)) snap5_elem_r2 = np.average( np.logical_and(snap.tezine_S5 <= r2_max, snap.tezine_S5 >= r2_min)) snap6_elem_r2 = np.average( np.logical_and(snap.tezine_S6 <= r2_max, snap.tezine_S6 >= r2_min)) snap7_elem_r2 = np.average( np.logical_and(snap.tezine_S7 <= r2_max, snap.tezine_S7 >= r2_min)) snap8_elem_r2 = np.average( np.logical_and(snap.tezine_S8 <= r2_max, snap.tezine_S8 >= r2_min)) snap9_elem_r2 = np.average( np.logical_and(snap.tezine_S9 <= r2_max, snap.tezine_S9 >= r2_min)) snap10_elem_r2 = np.average( np.logical_and(snap.tezine_S10 <= r2_max, snap.tezine_S10 >= r2_min)) snap11_elem_r2 = np.average( np.logical_and(snap.tezine_S11 <= r2_max, snap.tezine_S11 >= r2_min)) snap12_elem_r2 = np.average( np.logical_and(snap.tezine_S12 <= r2_max, snap.tezine_S12 >= r2_min)) r3_min = (min_anp - 0.1).clip( min=0) # ako razlika daje rezultat ispod nule, postavi na nulu r3_max = max_anp + 0.1 snap_elem_r3 = np.average( np.logical_and(snap.tezine_S1 <= r3_max, snap.tezine_S1 >= r3_min)) snap2_elem_r3 = np.average( np.logical_and(snap.tezine_S2 <= r3_max, snap.tezine_S2 >= r3_min)) snap3_elem_r3 = np.average( np.logical_and(snap.tezine_S3 <= r3_max, snap.tezine_S3 >= r3_min)) snap4_elem_r3 = np.average( np.logical_and(snap.tezine_S4 <= r3_max, snap.tezine_S4 >= r3_min)) snap5_elem_r3 = np.average( np.logical_and(snap.tezine_S5 <= r3_max, snap.tezine_S5 >= r3_min)) snap6_elem_r3 = np.average( np.logical_and(snap.tezine_S6 <= r3_max, snap.tezine_S6 >= r3_min)) snap7_elem_r3 = np.average( np.logical_and(snap.tezine_S7 <= r3_max, snap.tezine_S7 >= r3_min)) snap8_elem_r3 = np.average( np.logical_and(snap.tezine_S8 <= r3_max, snap.tezine_S8 >= r3_min)) snap9_elem_r3 = np.average( np.logical_and(snap.tezine_S9 <= r3_max, snap.tezine_S9 >= r3_min)) snap10_elem_r3 = np.average( np.logical_and(snap.tezine_S10 <= r3_max, snap.tezine_S10 >= r3_min)) snap11_elem_r3 = np.average( np.logical_and(snap.tezine_S11 <= r3_max, snap.tezine_S11 >= r3_min)) snap12_elem_r3 = np.average( np.logical_and(snap.tezine_S12 <= r3_max, snap.tezine_S12 >= r3_min)) # Zaokruziti tezine na 5 decimala jer rangiranje zna bit osjetljivo rank_anp1 = rankdata(np.round(anp1.tezine, 5), method='ordinal') rank_anp2 = rankdata(np.round(anp2.tezine, 5), method='ordinal') rank_anp3 = rankdata(np.round(anp3.tezine, 5), method='ordinal') rank_anp4 = rankdata(np.round(anp4.tezine, 5), method='ordinal') mean_anp_rank = (rank_anp1 + rank_anp2 + rank_anp3 + rank_anp4) / 4 rank_snap1 = rankdata(np.round(snap.tezine_S1, 5), method='ordinal') rank_snap2 = rankdata(np.round(snap.tezine_S2, 5), method='ordinal') rank_snap3 = rankdata(np.round(snap.tezine_S3, 5), method='ordinal') rank_snap4 = rankdata(np.round(snap.tezine_S4, 5), method='ordinal') rank_snap5 = rankdata(np.round(snap.tezine_S5, 5), method='ordinal') rank_snap6 = rankdata(np.round(snap.tezine_S6, 5), method='ordinal') rank_snap7 = rankdata(np.round(snap.tezine_S7, 5), method='ordinal') rank_snap8 = rankdata(np.round(snap.tezine_S8, 5), method='ordinal') rank_snap9 = rankdata(np.round(snap.tezine_S9, 5), method='ordinal') rank_snap10 = rankdata(np.round(snap.tezine_S10, 5), method='ordinal') rank_snap11 = rankdata(np.round(snap.tezine_S11, 5), method='ordinal') rank_snap12 = rankdata(np.round(snap.tezine_S12, 5), method='ordinal') anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap1) sk1_snap1 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap2) sk1_snap2 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap3) sk1_snap3 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap4) sk1_snap4 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap5) sk1_snap5 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap6) sk1_snap6 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap7) sk1_snap7 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap8) sk1_snap8 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap9) sk1_snap9 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap10) sk1_snap10 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap11) sk1_snap11 = spearman_difference(np.amin(anp_array, axis=1)) anp_array = calculate_diff_array(rank_anp1, rank_anp2, rank_anp3, rank_anp4, rank_snap12) sk1_snap12 = spearman_difference(np.amin(anp_array, axis=1)) sk2_snap1 = spearman_difference(mean_anp_rank - rank_snap1) sk2_snap2 = spearman_difference(mean_anp_rank - rank_snap2) sk2_snap3 = spearman_difference(mean_anp_rank - rank_snap3) sk2_snap4 = spearman_difference(mean_anp_rank - rank_snap4) sk2_snap5 = spearman_difference(mean_anp_rank - rank_snap5) sk2_snap6 = spearman_difference(mean_anp_rank - rank_snap6) sk2_snap7 = spearman_difference(mean_anp_rank - rank_snap7) sk2_snap8 = spearman_difference(mean_anp_rank - rank_snap8) sk2_snap9 = spearman_difference(mean_anp_rank - rank_snap9) sk2_snap10 = spearman_difference(mean_anp_rank - rank_snap10) sk2_snap11 = spearman_difference(mean_anp_rank - rank_snap11) sk2_snap12 = spearman_difference(mean_anp_rank - rank_snap12) counter += 1 res = ( (zavisnost, usporedba), { 'ANP1': anp1.tezine.flatten(), 'ANP2': anp2.tezine.flatten(), 'ANP3': anp3.tezine.flatten(), 'ANP4': anp4.tezine.flatten(), 'SNAP1': snap.tezine_S1.flatten(), 'min_ANP': min_anp, 'max_ANP': max_anp, 'R1_min': r1_min, 'R1_max': r1_max, 'SNAP1_elem_R1': snap_elem_r1, 'SNAP2_elem_R1': snap2_elem_r1, 'SNAP3_elem_R1': snap3_elem_r1, 'SNAP4_elem_R1': snap4_elem_r1, 'SNAP5_elem_R1': snap5_elem_r1, 'SNAP6_elem_R1': snap6_elem_r1, 'SNAP7_elem_R1': snap7_elem_r1, 'SNAP8_elem_R1': snap8_elem_r1, 'SNAP9_elem_R1': snap9_elem_r1, 'SNAP10_elem_R1': snap10_elem_r1, 'SNAP11_elem_R1': snap11_elem_r1, 'SNAP12_elem_R1': snap12_elem_r1, 'R2_min': r2_min, 'R2_max': r2_max, 'SNAP1_elem_R2': snap_elem_r2, 'SNAP2_elem_R2': snap2_elem_r2, 'SNAP3_elem_R2': snap3_elem_r2, 'SNAP4_elem_R2': snap4_elem_r2, 'SNAP5_elem_R2': snap5_elem_r2, 'SNAP6_elem_R2': snap6_elem_r2, 'SNAP7_elem_R2': snap7_elem_r2, 'SNAP8_elem_R2': snap8_elem_r2, 'SNAP9_elem_R2': snap9_elem_r2, 'SNAP10_elem_R2': snap10_elem_r2, 'SNAP11_elem_R2': snap11_elem_r2, 'SNAP12_elem_R2': snap12_elem_r2, 'R3_min': r3_min, 'R3_max': r3_max, 'SNAP1_elem_R3': snap_elem_r3, 'SNAP2_elem_R3': snap2_elem_r3, 'SNAP3_elem_R3': snap3_elem_r3, 'SNAP4_elem_R3': snap4_elem_r3, 'SNAP5_elem_R3': snap5_elem_r3, 'SNAP6_elem_R3': snap6_elem_r3, 'SNAP7_elem_R3': snap7_elem_r3, 'SNAP8_elem_R3': snap8_elem_r3, 'SNAP9_elem_R3': snap9_elem_r3, 'SNAP10_elem_R3': snap10_elem_r3, 'SNAP11_elem_R3': snap11_elem_r3, 'SNAP12_elem_R3': snap12_elem_r3, # 'rank_ANP1': rank_anp1, 'rank_ANP2': rank_anp2, 'rank_ANP3': rank_anp3, # 'rank_ANP4': rank_anp4, 'rank_SNAP1': rank_snap1, 'rank_SNAP2': rank_snap2, # 'rank_SNAP3': rank_snap3, 'rank_SNAP4': rank_snap4, 'rank_SNAP5': rank_snap5, # 'rank_SNAP6': rank_snap6, 'rank_SNAP7': rank_snap7, 'rank_SNAP8': rank_snap8, # 'rank_SNAP9': rank_snap9, 'rank_SNAP10': rank_snap10, 'rank_SNAP11': rank_snap11, # 'rank_SNAP12': rank_snap12, 'sk1_snap1': sk1_snap1, 'sk2_snap1': sk2_snap1, 'sk1_snap2': sk1_snap2, 'sk2_snap2': sk2_snap2, 'sk1_snap3': sk1_snap3, 'sk2_snap3': sk2_snap3, 'sk1_snap4': sk1_snap4, 'sk2_snap4': sk2_snap4, 'sk1_snap5': sk1_snap5, 'sk2_snap5': sk2_snap5, 'sk1_snap6': sk1_snap6, 'sk2_snap6': sk2_snap6, 'sk1_snap7': sk1_snap7, 'sk2_snap7': sk2_snap7, 'sk1_snap8': sk1_snap8, 'sk2_snap8': sk2_snap8, 'sk1_snap9': sk1_snap9, 'sk2_snap9': sk2_snap9, 'sk1_snap10': sk1_snap10, 'sk2_snap10': sk2_snap10, 'sk1_snap11': sk1_snap11, 'sk2_snap11': sk2_snap11, 'sk1_snap12': sk1_snap12, 'sk2_snap12': sk2_snap12 }) return res