コード例 #1
0
# Create objectiveFunction function
obj_function = MaxGroupDiff(problem['adj_matrix'],
                            problem['Gmax'] - problem['Gmin'])

# Create ACO instance
colony = antco.ACO(n_ants=n_ants,
                   graph=problem['adj_matrix'],
                   heuristic=None,
                   objective=obj_function,
                   iterations=iterations,
                   graph_type=graph_type,
                   evaporation=evaporation,
                   alpha=alpha,
                   beta=beta,
                   pheromone_init=pheromone_init,
                   path_limits=path_limits,
                   pheromone_update=pheromone_update,
                   n_jobs=n_jobs,
                   seed=seed,
                   tol=tol,
                   Q=Q,
                   R=R,
                   scaleScores=antco.tools.MinMaxScaler(max_val=1.0,
                                                        max_historic=True))

# Pre-process ACO instance
antco.preproc.apply(colony, accessory_node=True)
#antco.preproc.apply(colony, scale_heuristic={'min_val': 0.0, 'max_val': 1.0})

# Run algorithm
コード例 #2
0
    generations=generations,
    tournsize=tournsize,
    hof=elite,
    n_jobs=ea_n_jobs,
    genetic_objective_args={'cost_matrix': distance_matrix})

# Create ACO instance
colony = antco.ACO(n_ants=n_ants,
                   graph=adjacency_matrix,
                   heuristic=-1 * distance_matrix,
                   objective=obj_function,
                   iterations=iterations,
                   graph_type=graph_type,
                   evaporation=evaporation,
                   alpha=alpha,
                   beta=beta,
                   pheromone_init=pheromone_init,
                   path_limits=(n_nodes - 1, n_nodes),
                   tol=tol,
                   pheromone_update=pheromone_update,
                   n_jobs=n_jobs,
                   seed=seed,
                   scaleScores=antco.tools.MinMaxScaler(max_val=2.0,
                                                        max_historic=True))

# Pre-process ACO instance
antco.preproc.apply(colony, scale_heuristic={'min_val': 0.0, 'max_val': 1.0})

# Run algorithm
print(f'\nNumber of cities: {n_nodes}\n')
start = time.time()
コード例 #3
0
    'strategy': 'acs',
    'decay': 0.1,
    'graph_type': graph_type,
    'weight': 1.0
}
aco_obj = MinDistance(distance_matrix, objective)

# Create ACO instance
colony = antco.ACO(n_ants=n_ants,
                   graph=adjacency_matrix,
                   heuristic=(-1 * distance_matrix),
                   objective=aco_obj,
                   iterations=iterations,
                   graph_type=graph_type,
                   evaporation=evaporation,
                   alpha=alpha,
                   beta=beta,
                   pheromone_init=pheromone_init,
                   path_limits=(n_nodes - 1, n_nodes),
                   pheromone_update=pheromone_update,
                   n_jobs=n_jobs,
                   seed=seed,
                   tol=tol,
                   Q=0.5)

antco.preproc.apply(colony, scale_heuristic={'min_val': 0.0, 'max_val': 1.0})

# Run algorithm
print(f'\nNumber of cities: {n_nodes}\n')
start = time.time()
report = antco.algorithm.antColonySystem(colony)
end = time.time()