コード例 #1
0
def moving_avg(name, x, vals={}, avg_win_size=100):
    ut.add_dict_list(vals, name, x)
    return np.mean(vals[name][-avg_win_size:])
コード例 #2
0
  def make_train_model(self):
    with tf.device(self.default_gpu):
      pr = self.pr
      # steps
      self.step = tf.get_variable(
        'global_step', [], trainable = False,
        initializer = tf.constant_initializer(0), dtype = tf.int64)
      self.lr = tf.constant(pr.base_lr)

      # model
      scale = pr.gamma ** tf.floor(cast_float(self.step) / float(pr.step_size))
      self.lr_step = pr.base_lr * scale
      #lr = tf.Print(lr, [lr, lr*1e3, scale])
      opt = shift.make_opt(pr.opt_method, self.lr_step, pr)
      self.inputs = read_data(pr, self.gpus)

      gpu_grads, gpu_losses = {}, {}
      for i, gpu in enumerate(self.gpus):
        with tf.device(gpu):
          reuse = (i > 0) 
          ims = self.inputs[i]['ims']
          samples = self.inputs[i]['samples']
          labels = self.inputs[i]['label']

          net = make_net(ims, samples, pr, reuse = reuse, train = self.is_training)
          self.loss = tfu.Loss('loss')
          self.loss.add_loss(shift.slim_losses_with_prefix(None), 'reg')
          self.loss.add_loss_acc(label_loss(net.logits, labels), 'label')
          grads = opt.compute_gradients(self.loss.total_loss())

          ut.add_dict_list(gpu_grads, self.loss.name, grads)
          ut.add_dict_list(gpu_losses, self.loss.name, self.loss)

          if i == 0:
            self.net = net
        
      (gs, vs) = zip(*tfu.average_grads(gpu_grads['loss']))
      if pr.grad_clip is not None:
        gs, _ = tf.clip_by_global_norm(gs, pr.grad_clip)
      gs = [tfu.print_every(gs[0], 100, ['grad norm:', tf.global_norm(gs)])] + list(gs[1:])
      gvs = zip(gs, vs)
      #for g, v in zip(grads, vs):
      # if g[0] is not None:
      #   tf.summary.scalar('%s_grad_norm' % v.name, tf.reduce_sum(g[0]**2)**0.5)
      #   tf.summary.scalar('%s_val_norm' % v.name, tf.reduce_sum(v**2)**0.5)
      #self.train_op = opt.apply_gradients(gvs, global_step = self.step)
      
      bn_ups = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      # self.train_op = tf.group(self.train_op, *bn_ups)

      with tf.control_dependencies(bn_ups):
        self.train_op = opt.apply_gradients(gvs, global_step = self.step)
      
      self.coord = tf.train.Coordinator()
      self.saver_fast = tf.train.Saver()
      self.saver_slow = tf.train.Saver(max_to_keep = 1000)

      #self.init_op = tf.global_variables_initializer()
      if self.is_training:
        self.init_op = tf.group(
          tf.global_variables_initializer(), 
          tf.local_variables_initializer())
        self.sess.run(self.init_op)

      tf.train.start_queue_runners(sess = self.sess, coord = self.coord)

      self.merged_summary = tf.summary.merge_all()
      print 'Tensorboard command:'
      summary_dir = ut.mkdir(pj(pr.summary_dir, ut.simple_timestamp()))
      print 'tensorboard --logdir=%s' % summary_dir
      self.sum_writer = tf.summary.FileWriter(summary_dir, self.sess.graph)

      if self.profile:
        self.profiler = tf.profiler.Profiler(self.sess.graph)
コード例 #3
0
    def make_train_ops(self):
        pr = self.pr
        # steps
        self.step = tf.get_variable('global_step', [],
                                    trainable=False,
                                    initializer=tf.constant_initializer(0),
                                    dtype=tf.int64)
        #self.lr = tf.constant(pr.base_lr)

        # model
        scale = pr.gamma**tf.floor(cast_float(self.step) / float(pr.step_size))
        self.lr = pr.base_lr * scale
        opt = make_opt(pr.opt_method, self.lr, pr)
        self.inputs = read_data(pr, self.gpus)

        gpu_grads, gpu_losses = {}, {}
        for i, gpu in enumerate(self.gpus):
            with tf.device(gpu):
                reuse = (i > 0)
                ims = self.inputs[i]['ims']
                all_samples = self.inputs[i]['samples']
                ytids = self.inputs[i]['ytids']
                assert not pr.do_shift
                snd = mix_sounds(all_samples, pr)
                net = make_net(ims,
                               snd.samples,
                               snd.spec,
                               snd.phase,
                               pr,
                               reuse=reuse,
                               train=self.is_training)
                gen_loss, discrim_loss = make_loss(net,
                                                   snd,
                                                   pr,
                                                   reuse=reuse,
                                                   train=self.is_training)

                if pr.gan_weight <= 0:
                    grads = opt.compute_gradients(gen_loss.total_loss())
                else:
                    # doesn't work with baselines, such as I3D
                    #raise RuntimeError()
                    print 'WARNING: DO NOT USE GAN WITH I3D'
                    var_list = vars_with_prefix('gen') + vars_with_prefix(
                        'im') + vars_with_prefix('sf')
                    grads = opt.compute_gradients(gen_loss.total_loss(),
                                                  var_list=var_list)
                ut.add_dict_list(gpu_grads, 'gen', grads)
                ut.add_dict_list(gpu_losses, 'gen', gen_loss)

                var_list = vars_with_prefix('discrim')
                if pr.gan_weight <= 0:
                    grads = []
                else:
                    grads = opt.compute_gradients(discrim_loss.total_loss(),
                                                  var_list=var_list)
                ut.add_dict_list(gpu_grads, 'discrim', grads)
                ut.add_dict_list(gpu_losses, 'discrim', discrim_loss)

                if i == 0:
                    self.net = net
                    self.show_train = self.make_show_op(net, ims, snd, ytids)

        self.gen_loss = gpu_losses['gen'][0]
        self.discrim_loss = gpu_losses['discrim'][0]

        self.train_ops = {}
        self.loss_names = {}
        self.loss_vals = {}
        ops = []
        for name in ['gen', 'discrim']:
            if pr.gan_weight <= 0. and name == 'discrim':
                op = tf.no_op()
            else:
                (gs, vs) = zip(*mu.average_grads(gpu_grads[name]))
                if pr.grad_clip is not None:
                    gs, _ = tf.clip_by_global_norm(gs, pr.grad_clip)
                #gs = [mu.print_every(gs[0], 100, ['%s grad norm:' % name, tf.global_norm(gs)])] + list(gs[1:])
                gvs = zip(gs, vs)
                #bn_ups = slim_ups_with_prefix(name)
                #bn_ups = slim_ups_with_prefix(None)
                if name == 'gen':
                    bn_ups = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
                else:
                    bn_ups = slim_ups_with_prefix('discrim')

                print 'Number of batch norm ups for', name, len(bn_ups)
                with tf.control_dependencies(bn_ups):
                    op = opt.apply_gradients(gvs)
                #op = tf.group(opt.apply_gradients(gvs, global_step = (self.step if name == 'discrim' else None)), *bn_ups)
                #op = tf.group(opt.apply_gradients(gvs), *bn_ups)
            ops.append(op)
            self.train_ops[name] = op
            loss = (self.gen_loss if name == 'gen' else self.discrim_loss)
            self.loss_names[name] = loss.get_loss_names()
            self.loss_vals[name] = loss.get_losses()
        self.update_step = self.step.assign(self.step + 1)

        if pr.gan_weight > 0:
            self.train_op = tf.group(*(ops + [self.update_step]))
        else:
            print 'Only using generator, because gan_weight = %.2f' % pr.gan_weight
            self.train_op = tf.group(ops[0], self.update_step)
コード例 #4
0
  #     out_db[name] = map(convert_im, in_db[name].value)


  with h5py.File(out_file, 'w') as out_db:
    vals = {}
    for k in sorted(in_db.keys()):
      if k.startswith('step_'):
        im_names = ['GelSightA_image',
                    'GelSightB_image',
                    'color_image_KinectA',
                    'color_image_KinectB']
        value_names = ['depth_image_KinectA', 
                       'depth_image_KinectB',
                       'timestamp']
        for name in im_names:
          ut.add_dict_list(vals, name, convert_im(in_db[k][name].value))
        for name in value_names:
          ut.add_dict_list(vals, name, in_db[k][name].value)
          
      else:
        #out_db.create_dataset(k, data = in_db[k].value if hasattr(in_db[k], 'value') else in_db[k])
        if hasattr(in_db[k], 'value'):
          out_db.create_dataset(k, data = in_db[k].value)
        else:
          print 'skipping:', k

    for name in vals:
      out_db.create_dataset(name, data=vals[name])

print 'Size before:'
os.system('du -ch %s' % in_file)
コード例 #5
0
    def make_model(self):
        with tf.device(self.default_gpu):
            pr = self.pr
            # steps
            self.step = tf.get_variable('global_step', [],
                                        trainable=False,
                                        initializer=tf.constant_initializer(0),
                                        dtype=tf.int64)
            self.lr = tf.constant(pr.base_lr)

            # model
            opt = make_opt(pr.opt_method, pr.base_lr, pr)
            self.inputs = read_data(pr, self.gpus)

            gpu_grads, gpu_losses = {}, {}
            for i, gpu in enumerate(self.gpus):
                with tf.device(gpu):
                    reuse = (i > 0)
                    with tf.device('/cpu:0'):
                        ims = self.inputs[i]['ims']
                        samples_ex = self.inputs[i]['samples']
                        assert pr.both_examples
                        assert not pr.small_augment
                        labels = tf.random_uniform([shape(ims, 0)],
                                                   0,
                                                   2,
                                                   dtype=tf.int64,
                                                   name='labels_sample')
                        samples0 = tf.where(tf.equal(labels, 1),
                                            samples_ex[:, 1], samples_ex[:, 0])
                        samples1 = tf.where(tf.equal(labels, 0),
                                            samples_ex[:, 1], samples_ex[:, 0])
                        labels1 = 1 - labels

                    net0 = make_net(ims,
                                    samples0,
                                    pr,
                                    reuse=reuse,
                                    train=self.is_training)
                    net1 = make_net(None,
                                    samples1,
                                    pr,
                                    im_net=net0.im_net,
                                    reuse=True,
                                    train=self.is_training)
                    labels = tf.concat([labels, labels1], 0)
                    net = ut.Struct(
                        logits=tf.concat([net0.logits, net1.logits], 0),
                        cam=tf.concat([net0.cam, net1.cam], 0),
                        last_conv=tf.concat([net0.last_conv, net1.last_conv],
                                            0))

                    loss = mu.Loss('loss')
                    loss.add_loss(slim_losses_with_prefix(None), 'reg')
                    loss.add_loss_acc(sigmoid_loss(net.logits, labels),
                                      'label')
                    grads = opt.compute_gradients(loss.total_loss())

                    ut.add_dict_list(gpu_grads, loss.name, grads)
                    ut.add_dict_list(gpu_losses, loss.name, loss)
                    #self.loss = loss

                    if i == 0:
                        self.net = net

            self.loss = mu.merge_losses(gpu_losses['loss'])
            for name, val in zip(self.loss.get_loss_names(),
                                 self.loss.get_losses()):
                tf.summary.scalar(name, val)

            if not self.is_training:
                #pr_test = pr.copy()
                pr_test = self.pr_test.copy()
                pr_test.augment_ims = False
                print 'pr_test ='
                print pr_test

                self.test_ims, self.test_samples, self.test_ytids = mu.on_cpu(
                    lambda: shift_dset.make_db_reader(
                        pr_test.test_list,
                        pr_test,
                        pr.test_batch, ['im', 'samples', 'ytid'],
                        one_pass=True))

                if pr_test.do_shift:
                    self.test_labels = tf.random_uniform(
                        [shape(self.test_ims, 0)], 0, 2, dtype=tf.int64)
                    self.test_samples = tf.where(tf.equal(self.test_labels, 1),
                                                 self.test_samples[:, 1],
                                                 self.test_samples[:, 0])
                else:
                    self.test_labels = tf.ones(shape(self.test_ims, 0),
                                               dtype=tf.int64)
                    #self.test_samples = tf.where(tf.equal(self.test_labels, 1), self.test_samples[:, 1], self.test_samples[:, 0])
                    print 'sample shape:', shape(self.test_samples)

                self.test_net = make_net(self.test_ims,
                                         self.test_samples,
                                         pr_test,
                                         reuse=True,
                                         train=self.is_training)

            (gs, vs) = zip(*mu.average_grads(gpu_grads['loss']))
            if pr.grad_clip is not None:
                gs, _ = tf.clip_by_global_norm(gs, pr.grad_clip)
            gs = [
                mu.print_every(gs[0], 100,
                               ['grad norm:', tf.global_norm(gs)])
            ] + list(gs[1:])
            gvs = zip(gs, vs)

            bn_ups = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            if pr.multipass:
                ops = [
                    opt.apply_gradients(gvs, global_step=self.step)
                    for i in xrange(pr.multipass_count)
                ]

                def op_helper(count=[0]):
                    op = ops[count[0] % len(ops)]
                    count[0] += 1
                    return op

                self.train_op = op_helper
            else:
                op = tf.group(opt.apply_gradients(gvs, global_step=self.step),
                              *bn_ups)
                self.train_op = lambda: op

            self.coord = tf.train.Coordinator()
            self.saver = tf.train.Saver()

            self.init_op = tf.group(tf.global_variables_initializer(),
                                    tf.local_variables_initializer())
            self.sess.run(self.init_op)
            tf.train.start_queue_runners(sess=self.sess, coord=self.coord)

            self.merged_summary = tf.summary.merge_all()
            print 'Tensorboard command:'
            summary_dir = ut.mkdir(pj(pr.summary_dir, ut.simple_timestamp()))
            print 'tensorboard --logdir=%s' % summary_dir
            self.sum_writer = tf.summary.FileWriter(summary_dir,
                                                    self.sess.graph)