コード例 #1
0
def fuzz_expr(expr, tvm_pass):
    mod = tvm.relay.Module()
    mod["main"] = expr

    # Generate random concrete arguments based on the argument types
    conc_args = []
    for arg_type in mod["main"].checked_type.arg_types:
        conc_args.append(gen_random_type(arg_type))

    # Get the output of running the expr on concrete inputs
    intrp = relay.create_executor()
    out_org = intrp.evaluate(expr)(*conc_args)

    # Run the pass
    new_mod = tvm_pass(mod)
    intrp = relay.create_executor()
    out_new = intrp.evaluate(new_mod["main"])(*conc_args)

    if not check_outs(out_org, out_new):
        return (conc_args, out_org, out_new)

    vm_intrp = relay.create_executor(kind="vm", mod=new_mod)
    out_new = vm_intrp.evaluate(new_mod["main"])(*[a.data for a in conc_args])
    if not check_outs(out_org, out_new):
        return (conc_args, out_org, out_new)

    f = aot.compile(new_mod["main"], new_mod, tvm.context('llvm', 0),
                    tvm.target.create('llvm'))
    out_new = f(*conc_args)
    if not check_outs(out_org, out_new):
        return (conc_args, out_org, out_new)
コード例 #2
0
ファイル: readme_ex.py プロジェクト: wenming2014/relay-aot
def double_example():
    # Declare a Relay module.
    mod = Module()

    # Implement the double function.
    x = var('x', shape=())
    double = GlobalVar('double')
    mod[double] = Function([x], x + x)

    # Generate a function which calls double twice.
    x = var('x', shape=())
    f = Function([x], double(double(x)))
    # Compile the function.
    cfunc = compile(f, mod)

    a = tvm.nd.array(np.array(1.5, dtype='float32'))
    print(cfunc(a).asnumpy())
コード例 #3
0
def treelstm_setup(device, method, dataset, idx):
    use_aot = (method == 'aot')
    use_gpu = (device == 'gpu')
    torch_cpu = torch.device('cpu')
    model, data = initialize_treelstm(dataset)
    model.to(torch_cpu)
    model.eval()

    ltree, linput, rtree, rinput, label = data[idx]
    linput, rinput = linput.to(torch.device('cpu')), rinput.to(
        torch.device('cpu'))
    linput = model.emb(linput)

    tlstm, mod, prelude = converter.initialize_tlstm(300, 150)

    rosetree = converter.forward(ltree, linput)
    relay_tree = converter.from_tree(prelude,
                                     rosetree.fmap(converter.pytorch_to_relay),
                                     relay.TensorType([], dtype='float32'))

    context = tvm.gpu(0) if use_gpu else tvm.cpu(0)
    target = tvm.target.cuda() if use_gpu else tvm.target.create('llvm')

    if use_aot:
        mod['main'] = tlstm.get()
        func = aot.compile(tlstm.get(), mod, ctx=context, tgt=target)
    else:
        opts = relay.transform.Sequential(
            [relay.transform.SimplifyInference(),
             relay.transform.FuseOps()])
        mod['main'] = tlstm.get()
        opts(mod)
        executor = relay.create_executor(mod=mod, ctx=context, target=target)
        func = executor.evaluate()

    thunk = lambda: func(relay_tree)
    return [thunk]
コード例 #4
0
ファイル: network.py プロジェクト: uwsampl/relay-bench
    def __init__(self, do_aot, use_gpu, *args):
        assert isinstance(do_aot, bool)
        assert isinstance(use_gpu, bool)
        self.mod = Module()
        self.prelude = Prelude(self.mod)
        self.use_gpu = use_gpu
        self.context = tvm.gpu(0) if use_gpu else tvm.cpu(0)
        self.target = tvm.target.cuda() if use_gpu else tvm.target.create('llvm')
        self.executor = create_executor(mod=self.mod, ctx=self.context, target=self.target)
        self.parameters = []
        self.forward_var = relay.GlobalVar('forward_var')

        # Set up forward pass.
        inputs, body, ret_type = self.compute(*args)
        self.inputs = inputs

        forward_compute = relay.Function(inputs + list([p[0] for p in self.parameters]), body, ret_type)
        self.mod[self.forward_var] = forward_compute
        self.mod['main'] = self.mod[self.forward_var]
        if do_aot:
            self.forward = aot.compile(self.forward_var, self.mod, ctx=self.context, tgt=self.target)
        else:
            self.forward = self.executor.evaluate(self.forward_var)
        self.args = [None] * len(inputs) + list([p[1] for p in self.parameters])
コード例 #5
0
ファイル: test_aot.py プロジェクト: slyubomirsky/relay-aot-1
def compile(f, mod):
    tgt = tvm.target.create('llvm')
    ctx = tvm.context('llvm', 0)
    return aot.compile(f, mod, ctx=ctx, tgt=tgt)