def strehlframe(image, primary, secondary, dimension, f_number, pixel_scale, lambda_mean, growth_step, find_source, xcenter, ycenter, fwhmpsf, threshold, quiet): start_time = time.time() info("Started at:", start_time) if not os.path.exists(image): raise RuntimeError("No file named {0}".format(image)) # Were we given coordinates, or do we need to find the source? if find_source: bright = daofind_brightest(image, fwhmpsf, threshold) center_col, center_row = bright['XCENTER'], bright['YCENTER'] else: center_col, center_row = xcenter, ycenter scale_to_physical, plate_scale_px, min_radius_real = compute_psf_scale( dimension, primary, secondary, f_number, lambda_mean, pixel_scale ) scaled_psf, scaled_psf_ctr, max_aperture_radius = generate_scaled_psf( dimension, primary, secondary, scale_to_physical ) # wrap psf in a frame psf = Frame(scaled_psf, scaled_psf_ctr) # precompute CoG and profile to be rescaled later curve_of_growth(psf, max_aperture_radius, step=growth_step, quiet=quiet) profile_from_growthcurve(psf) # values and functions to rescale our PSF Frame computed values # to physical counts max_extent_px = 2.5 / plate_scale_px # After 2.5" we're almost certainly measuring noise debug("after 2.5'' or", max_extent_px, "px we're almost certainly measuring noise") def max_flux(frame): """Frame max integrated flux (for a radius less than 2.5'')""" return np.max(frame.fluxes[frame.radii <= max_extent_px]) def scale_psf_fluxes(frame, psf): """ Returns a profile and curve of growth values for the ideal PSF scaled such that the total integrated flux is equivalent to the maximum flux in the frame passed as the first argument. """ scale_factor = (max_flux(frame) / max_flux(psf)) return psf.profile * scale_factor, psf.fluxes * scale_factor image_base = os.path.splitext(os.path.basename(image))[0] frame = Frame(pyfits.getdata(image), (float(center_col), float(center_row))) debug("loaded frame from", image) # subtract median row to handle light/charge leakage biasing measurements exclude_from, exclude_to = frame.ybounds(r=int(max_extent_px)) # exclude region of max_extent_px around center of frame avgrow_median_subtract(frame, exclude_from, exclude_to) debug("median subtracted frame") curve_of_growth(frame, max_aperture_radius, step=growth_step, quiet=quiet) debug("curve of growth generated") profile_from_growthcurve(frame) debug("profile generated") # scale psf.fluxes and psf.profile to a max value determined from frame ideal_profile, ideal_fluxes = scale_psf_fluxes(frame, psf) write_table("{0}_strehl.dat".format(image_base), ( ("Pixel Radius", frame.radii), ("Enclosed Pixels", frame.npix), ("Image Enclosed Energy (counts)", frame.fluxes), ("Ideal Enclosed Energy (counts)", ideal_fluxes), ("Strehl Ratio (for peak in this radius)", frame.fluxes / ideal_fluxes), ("Image Radial Profile (counts at radius)", frame.profile), ("Ideal Radial Profile (counts at radius)", ideal_profile) )) # Plot Curve of Growth with twinned axis in arcseconds plot_with_arcseconds( image_base + "_growth.pdf", psf.radii, frame.fluxes, ideal_fluxes, min_radius_real, max_extent_px, plate_scale_px, ylabel="Enclosed Flux at Radius" ) # fig, host = plt.subplots() # # plt.plot(frame.radii, frame.fluxes, 'r', label="Science Image") # plt.plot(psf.radii, ideal_fluxes, 'g', label="Ideal PSF") # plt.axvspan(0, min_radius_real, facecolor='g', alpha=0.25) # # plt.ylabel("Enclosed Flux at Radius") # plt.xlabel("Radius (pixels from center)") # # plt.xlim(1, max_extent_px) # plt.ylim(0, np.max(ideal_fluxes)) # xfrom, xto = fig.axes[0].get_xlim() # par1 = host.twiny() # par1.axes.set_xlabel("Radius (arcseconds from center)") # par1.set_xlim((xfrom * plate_scale_px, xto * plate_scale_px)) # par1.grid() # host.legend(loc=4) # # plt.savefig('{0}_growth.pdf'.format(image_base)) # debug("saved plot to", '{0}_growth.pdf'.format(image_base)) # # Plot profile with twinned axis in arcseconds plot_with_arcseconds( image_base + "_profile.pdf", psf.radii, frame.profile, ideal_profile, min_radius_real, 10, # xlim max plate_scale_px, ylabel="Flux at Radius", marker="." ) # fig, host = plt.subplots() # # plt.plot(frame.radii, frame.profile, c='r', marker=".", label="Science Image") # plt.plot(psf.radii, ideal_profile, c='g', marker='.', label="Ideal PSF") # plt.axvspan(0, min_radius_real, facecolor='g', alpha=0.25) # # plt.ylabel("Flux at Radius") # plt.xlabel("Radius (pixels from center)") # # plt.xlim(1, 10) # plt.ylim(0, np.max(ideal_profile)) # xfrom, xto = fig.axes[0].get_xlim() # par1 = host.twiny() # par1.axes.set_xlabel("Radius (arcseconds from center)") # par1.set_xlim((xfrom * plate_scale_px, xto * plate_scale_px)) # par1.grid() # host.legend(loc=4) # # plt.savefig('{0}_profile.pdf'.format(image_base)) # debug("saved plot to", '{0}_profile.pdf'.format(image_base)) info("Completed at:", time.time()) info("Total time:", time.time() - start_time)
def strehlcube(cubefile, rangespec, primary, secondary, dimension, f_number, pixel_scale, lambda_mean, growth_step, fwhmpsf, threshold, quiet): start_time = time.time() info("Started at:", start_time) if not os.path.exists(cubefile): raise RuntimeError("No file named {0}".format(cubefile)) cubefile_base = os.path.splitext(os.path.basename(cubefile))[0] # I: compute ideal psf scale_to_physical, plate_scale_px, min_radius_real = compute_psf_scale( dimension, primary, secondary, f_number, lambda_mean, pixel_scale ) scaled_psf, scaled_psf_ctr, max_aperture_radius = generate_scaled_psf( dimension, primary, secondary, scale_to_physical ) # wrap psf in a frame psf = Frame(scaled_psf, scaled_psf_ctr) # precompute CoG and profile to be rescaled later curve_of_growth(psf, max_aperture_radius, step=growth_step, quiet=quiet) profile_from_growthcurve(psf) # II: analyze images # values and functions to rescale our PSF Frame computed values # to physical counts max_extent_px = 2.5 / plate_scale_px # After 2.5" we're almost certainly measuring noise debug("after 2.5'' or", max_extent_px, "px we're almost certainly measuring noise") def max_flux(frame): """Frame max integrated flux (for a radius less than 2.5'')""" return np.max(frame.fluxes[frame.radii <= max_extent_px]) def scale_psf_fluxes(frame, psf): """ Returns a profile and curve of growth values for the ideal PSF scaled such that the total integrated flux is equivalent to the maximum flux in the frame passed as the first argument. """ scale_factor = (max_flux(frame) / max_flux(psf)) return psf.profile * scale_factor, psf.fluxes * scale_factor tmp_target_dir = tempfile.mkdtemp() ranges = parse_ranges(rangespec) debug("splitting ranges", ranges) fits_frames = split_frames(cubefile, ranges, tmp_target_dir) debug("working in", tmp_target_dir, "with frames", fits_frames) # set up array to hold each frame's analysis data radii_count = psf.radii.shape[0] frame_count = len(fits_frames) shape = (frame_count, 5, radii_count) analysis_frames = np.zeros(shape) # [cog x count, prof x count, ideal x count, idealprof x count, strehl x count] x frames strehl_rows = [] for fits_frame in fits_frames: bright = daofind_brightest(fits_frame, fwhmpsf, threshold) center_col, center_row = bright['XCENTER'], bright['YCENTER'] # this is slightly dumb... parse the frame # out of the filename frame_num = int(re.findall(r'\d+', os.path.basename(fits_frame))[0]) debug("frame #", frame_num, "has brightest at", center_col, center_row) frame = Frame(pyfits.getdata(fits_frame), (float(center_col), float(center_row))) debug("loaded frame from", fits_frame) # subtract median row to handle light/charge leakage biasing measurements exclude_from, exclude_to = frame.ybounds(r=int(max_extent_px)) # exclude region of max_extent_px around center of frame avgrow_median_subtract(frame, exclude_from, exclude_to) debug("median subtracted frame") curve_of_growth(frame, max_aperture_radius, step=growth_step, quiet=quiet) debug("curve of growth generated") profile_from_growthcurve(frame) debug("profile generated") # scale psf.fluxes and psf.profile to a max value determined from frame ideal_profile, ideal_fluxes = scale_psf_fluxes(frame, psf) strehls_for_all_radii = frame.fluxes / ideal_fluxes strehl_rows.append((frame_num, strehls_for_all_radii)) outfile = "{0}_{1}_strehlseries.txt".format(cubefile_base, rangespec) debug("writing strehl series to", outfile) with open(outfile, 'w') as f: f.write("# columns 2 and up are the pixel radii at which we computed the Strehl ratio") f.write("# frameidx\t") f.write('\t'.join(map(str, psf.radii))) f.write('\n') for idx, ratios in strehl_rows: f.write(str(idx)) f.write('\t') f.write('\t'.join(map(str, ratios))) f.write('\n') debug("removing exploded cube from", tmp_target_dir) shutil.rmtree(tmp_target_dir) info("Completed at:", time.time()) info("Total time:", time.time() - start_time)