def test_column_parallel_linear_with_async_allreduce_custom_amp( tensor_model_parallel_size): dtypes = (torch.half, torch.bfloat16) if torch.cuda.is_bf16_supported() else ( torch.half, ) parallel_state.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size( ) seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size batch_size = 7 for dtype in dtypes: # Network identity_layer = IdentityLayer3D(batch_size, batch_size, input_size).to(device="cuda", dtype=dtype) linear_layer = layers.ColumnParallelLinear( input_size, output_size, keep_master_weight_for_test=True, params_dtype=global_vars.get_args().params_dtype, use_cpu_initialization=global_vars.get_args(). use_cpu_initialization, ).to(device="cuda", dtype=dtype) # Forward loss_weight = torch.randn([batch_size, output_size]).cuda() output, _ = linear_layer(identity_layer()) loss = torch.mul(output, loss_weight).sum() loss.backward() torch.distributed.barrier() assert output.dtype == dtype # Reset groups parallel_state.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(' >> passed the test :-)')
def _column_parallel_linear_test_impl( self, no_async_tensor_model_parallel_allreduce: bool, gradient_accumulation_fusion: bool, ): for tensor_model_parallel_world_size in range(1, self.world_size + 1): with self.subTest(tensor_model_parallel_world_size= tensor_model_parallel_world_size): if self.world_size % tensor_model_parallel_world_size: continue parallel_state.initialize_model_parallel( tensor_model_parallel_size_= tensor_model_parallel_world_size, ) feature_size_coeff = self.INPUT_SIZE_COEFF feature_size = feature_size_coeff * tensor_model_parallel_world_size hidden_size = feature_size set_random_seed(self.SEED) input_tensor = torch.randn( self.BATCH_SIZE, hidden_size, feature_size, device="cuda", requires_grad=True, ) input_tensor.retain_grad() loss_weight = torch.randn( ( self.BATCH_SIZE, hidden_size, feature_size, ), device="cuda", ) linear = layers.ColumnParallelLinear( feature_size, feature_size, bias=False, keep_master_weight_for_test=True, params_dtype=torch.float32, use_cpu_initialization=True, no_async_tensor_model_parallel_allreduce= no_async_tensor_model_parallel_allreduce, gradient_accumulation_fusion=gradient_accumulation_fusion, ).cuda() if gradient_accumulation_fusion: with torch.no_grad(): linear.weight.main_grad = torch.randn_like( linear.weight) output, _ = linear(input_tensor) self.assertEqual( output.shape, ( self.BATCH_SIZE, hidden_size, feature_size, ), ) loss = torch.mul(output, loss_weight).sum() loss.backward() with torch.no_grad(): dldy = loss_weight.clone() x = input_tensor.clone() a = linear.master_weight.cuda().clone() dldx = torch.matmul(dldy, a) self.assertEqual(input_tensor.grad, dldx) # TODO(mkozuki): Cover the other cases. if (tensor_model_parallel_world_size == 1 and not gradient_accumulation_fusion): dlda = torch.matmul(torch.transpose(dldy, 1, 2), x).sum(dim=0) curr_dlda = torch.split( dlda, feature_size_coeff, dim=0)[parallel_state.get_tensor_model_parallel_rank()] self.assertEqual(linear.weight.grad, curr_dlda) parallel_state.destroy_model_parallel()
def test_column_parallel_linear(tensor_model_parallel_size): parallel_state.initialize_model_parallel(tensor_model_parallel_size) if torch.distributed.get_rank() == 0: print('> testing ColumnParallelLinear with model parallel ' 'size: {}'.format(tensor_model_parallel_size)) tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size( ) seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size batch_size = 7 hidden_size = 9 # Network gradient_accumulation_fusion = True identity_layer = IdentityLayer3D(batch_size, hidden_size, input_size).cuda() linear_layer = layers.ColumnParallelLinear( input_size, output_size, keep_master_weight_for_test=True, params_dtype=global_vars.get_args().params_dtype, use_cpu_initialization=global_vars.get_args().use_cpu_initialization, gradient_accumulation_fusion=gradient_accumulation_fusion, ).cuda() with torch.no_grad(): linear_layer.weight.main_grad = torch.randn_like(linear_layer.weight) loss_weight = torch.randn([batch_size, hidden_size, output_size]).cuda() # Forward input_ = identity_layer() output, _ = linear_layer(input_) assert list(output.shape) == [batch_size, hidden_size, output_size] loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # TODO (mkozuki): Fix the following commented out lines # as `gradient_accumulation_fusion` only takes 3D tensors. # Values. # dLdY = loss_weight # (7, 9, 17) # X = identity_layer.weight # (7, 9, 13) # A = linear_layer.master_weight.cuda() # (17, 13) # print(f"dLdY.shape, X.shape, A.shape = {dLdY.shape, X.shape, A.shape}") # dLdA = torch.matmul(dLdY.view(-1, 17).t(), X.view(-1, 13)) # print(f"dLdA.shape = {dLdA.shape}") # ones = torch.ones(batch_size, hidden_size, 1).cuda() # print(f"dLdY.shape, ones.shape = {dLdY.shape, ones.shape}") # dLdb = torch.matmul(ones, dLdY).view(-1) # dLdX = torch.matmul(dLdY, A) # rank = parallel_state.get_tensor_model_parallel_rank() # my_dLdA = torch.split(dLdA, output_size_coeff, # dim=0)[rank].contiguous().clone() # error = my_dLdA.sub(linear_layer.weight.grad).abs().max() # torch.distributed.barrier() # print(' error in dLdA on global rank {}: {}'.format( # torch.distributed.get_rank(), error)) # assert error < 1.0e-6 # my_dLdb = torch.split(dLdb, output_size_coeff, # dim=0)[rank].contiguous().clone() # error = my_dLdb.sub(linear_layer.bias.grad).abs().max() # torch.distributed.barrier() # print(' error in dLdb on global rank {}: {}'.format( # torch.distributed.get_rank(), error)) # assert error < 1.0e-6 # error = dLdX.sub(identity_layer.weight.grad).abs().max() # torch.distributed.barrier() # print(' error in dLdX on global rank {}: {}'.format( # torch.distributed.get_rank(), error)) # assert error < 1.0e-6 # Reset groups parallel_state.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(' >> passed the test :-)')
def test_column_parallel_linear(tensor_model_parallel_size): parallel_state.initialize_model_parallel(tensor_model_parallel_size) if torch.distributed.get_rank() == 0: print('> testing ColumnParallelLinear with model parallel ' 'size: {}'.format(tensor_model_parallel_size)) tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size( ) seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size batch_size = 7 # Network identity_layer = IdentityLayer2D(batch_size, input_size).cuda() linear_layer = layers.ColumnParallelLinear( input_size, output_size, keep_master_weight_for_test=True, params_dtype=global_vars.get_args().params_dtype, use_cpu_initialization=global_vars.get_args().use_cpu_initialization, ).cuda() loss_weight = torch.randn([batch_size, output_size]).cuda() # Forward input_ = identity_layer() output, _ = linear_layer(input_) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # Values. dLdY = loss_weight X = identity_layer.weight A = linear_layer.master_weight.cuda() dLdA = torch.matmul(dLdY.t(), X) dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1) dLdX = torch.matmul(dLdY, A) rank = parallel_state.get_tensor_model_parallel_rank() my_dLdA = torch.split(dLdA, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdA.sub(linear_layer.weight.grad).abs().max() torch.distributed.barrier() print(' error in dLdA on global rank {}: {}'.format( torch.distributed.get_rank(), error)) assert error < 1.0e-6 my_dLdb = torch.split(dLdb, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdb.sub(linear_layer.bias.grad).abs().max() torch.distributed.barrier() print(' error in dLdb on global rank {}: {}'.format( torch.distributed.get_rank(), error)) assert error < 1.0e-6 error = dLdX.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print(' error in dLdX on global rank {}: {}'.format( torch.distributed.get_rank(), error)) assert error < 1.0e-6 # Reset groups parallel_state.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(' >> passed the test :-)')