コード例 #1
0
ファイル: NystromTest.py プロジェクト: malcolmreynolds/APGL
    def testMatrixApprox(self):
        tol = 10**-6 
        A = numpy.random.rand(10, 10)
        A = A.dot(A.T)

        n = 5
        inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
        AHat = Nystrom.matrixApprox(A, inds)

        n = 10
        AHat2 = Nystrom.matrixApprox(A, n)
        self.assertTrue(numpy.linalg.norm(A - AHat2) < numpy.linalg.norm(A - AHat))
        self.assertTrue(numpy.linalg.norm(A - AHat2) < tol)

        #Test on a sparse matrix
        As = scipy.sparse.csr_matrix(A)
        n = 5
        inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
        AHat = Nystrom.matrixApprox(As, inds)

        n = 10
        AHat2 = Nystrom.matrixApprox(As, n)
        self.assertTrue(SparseUtils.norm(As - AHat2) < SparseUtils.norm(As - AHat))
        self.assertTrue(SparseUtils.norm(As - AHat2) < tol)

        #Compare dense and sparse solutions
        for n in range(1, 9):
            inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
            AHats = Nystrom.matrixApprox(As, inds)
            AHat = Nystrom.matrixApprox(A, inds)

            self.assertTrue(numpy.linalg.norm(AHat - numpy.array(AHats.todense())) < tol)
コード例 #2
0
    def testNorm(self):
        numRows = 10
        numCols = 10

        for k in range(10):
            A = scipy.sparse.rand(numRows, numCols, 0.1, "csr")

            norm = SparseUtils.norm(A)

            norm2 = 0
            for i in range(numRows):
                for j in range(numCols):
                    norm2 += A[i, j]**2

            norm2 = numpy.sqrt(norm2)
            norm3 = numpy.linalg.norm(numpy.array(A.todense()))
            self.assertAlmostEquals(norm, norm2)
            self.assertAlmostEquals(norm, norm3)