def setUp(self): self.support_group = GroupFactory(name=GROUP_SUPPORT_STAFF) self.personal_account_type = AccountType.objects.create( id=ACCOUNT_TYPE_PERSONAL) self.r401k_account_type = AccountType.objects.create( id=ACCOUNT_TYPE_ROTH401K) self.bonds_type = InvestmentType.Standard.BONDS.get() self.stocks_type = InvestmentType.Standard.STOCKS.get() self.bonds_asset_class = AssetClassFactory.create( investment_type=self.bonds_type) self.stocks_asset_class = AssetClassFactory.create( investment_type=self.stocks_type) self.portfolio_set = PortfolioSetFactory.create() self.portfolio_set.asset_classes.add(self.bonds_asset_class, self.stocks_asset_class) self.risk_score_metric = { "type": GoalMetric.METRIC_TYPE_RISK_SCORE, "comparison": GoalMetric.METRIC_COMPARISON_EXACTLY, "configured_val": 0.4, "rebalance_type": GoalMetric.REBALANCE_TYPE_RELATIVE, "rebalance_thr": 0.1 } self.bonds_index = MarketIndexFactory.create() self.stocks_index = MarketIndexFactory.create() self.bonds_ticker = TickerFactory.create( asset_class=self.bonds_asset_class, benchmark=self.bonds_index) self.stocks_ticker = TickerFactory.create( asset_class=self.stocks_asset_class, benchmark=self.stocks_index)
def setUp(self): # Mocked to speed up tests, no need run them every time PDFStatement.save_pdf = MagicMock() self.support_group = GroupFactory(name=GROUP_SUPPORT_STAFF) self.plan = RetirementPlanFactory.create() self.plan2 = RetirementPlanFactory.create(client=self.plan.client) self.plan3 = RetirementPlanFactory.create() # self.advice_url = reverse('api:v1:client-retirement-advice', args=[self.plan.client.id, self.plan.id]) self.plan_url = '/api/v1/clients/{}/retirement-plans/{}'.format( self.plan.client.id, self.plan.id) self.advice_url = '/api/v1/clients/{}/retirement-plans/{}/advice-feed'.format( self.plan.client.id, self.plan.id) self.invite = EmailInviteFactory.create( user=self.plan.client.user, status=EmailInvite.STATUS_ACCEPTED) self.bonds_type = InvestmentType.Standard.BONDS.get() self.stocks_type = InvestmentType.Standard.STOCKS.get() self.bonds_asset_class = AssetClassFactory.create( investment_type=self.bonds_type) self.stocks_asset_class = AssetClassFactory.create( investment_type=self.stocks_type) self.portfolio_set = PortfolioSetFactory.create() self.portfolio_set.asset_classes.add(self.bonds_asset_class, self.stocks_asset_class)
def test_get_portfolio_sets(self): portfolio_set = PortfolioSetFactory.create() url = '/api/v1/settings/portfolio-sets' self.client.force_authenticate(user=Fixture1.client1().user) response = self.client.get(url) self.assertEqual(len(response.data), PortfolioSet.objects.all().count()) self.assertTrue('name' in response.data[0]) self.assertTrue('portfolio_provider' in response.data[0])
def setUp(self): self.t1 = TickerFactory.create(symbol='SPY', unit_price=5) self.t2 = TickerFactory.create(symbol='VEA', unit_price=5) self.t3 = TickerFactory.create(symbol='TIP', unit_price=100) self.t4 = TickerFactory.create(symbol='IEV', unit_price=100) self.t5 = TickerFactory.create(symbol='IEV2', unit_price=100, asset_class=self.t4.asset_class) self.equity = AssetFeatureValueFactory.create( name='equity', assets=[self.t1, self.t2]) self.bond = AssetFeatureValueFactory.create(name='bond', assets=[self.t3, self.t4]) self.goal_settings = GoalSettingFactory.create() asset_classes = [ self.t1.asset_class, self.t2.asset_class, self.t3.asset_class, self.t4.asset_class ] portfolio_set = PortfolioSetFactory.create(name='set', risk_free_rate=0.01, asset_classes=asset_classes) self.goal = GoalFactory.create(approved_settings=self.goal_settings, active_settings=self.goal_settings, cash_balance=100, portfolio_set=portfolio_set) self.tickers = [self.t1, self.t2, self.t3, self.t4, self.t4] self.prices = [4, 4, 90, 90, 95] self.quantities = [5, 5, 5, 5, 5] self.executed = [ date(2015, 1, 1), date(2016, 1, 1), date(2015, 1, 1), date(2016, 1, 1), date(2016, 1, 1) ] self.execution_details = [] for i in range(5): execution = Fixture1.create_execution_details( self.goal, self.tickers[i], self.quantities[i], self.prices[i], self.executed[i]) self.execution_details.append(execution) self.data_provider = DataProviderDjango(mocked_now.date()) self.execution_provider = ExecutionProviderDjango() MarkowitzScaleFactory.create() self.setup_performance_history() self.idata = get_instruments(self.data_provider) self.portfolio = PortfolioFactory.create(setting=self.goal_settings) self.current_weights = get_held_weights(self.goal)
def setUp(self): self.t1 = TickerFactory.create(symbol='SPY', unit_price=5) self.t2 = TickerFactory.create(symbol='VEA', unit_price=5) self.t3 = TickerFactory.create(symbol='TIP', unit_price=100) self.t4 = TickerFactory.create(symbol='IEV', unit_price=100) self.equity = AssetFeatureValueFactory.create( name='equity', assets=[self.t1, self.t2]) self.bond = AssetFeatureValueFactory.create(name='bond', assets=[self.t3, self.t4]) self.goal_settings = GoalSettingFactory.create() asset_classes = [ self.t1.asset_class, self.t2.asset_class, self.t3.asset_class, self.t4.asset_class ] portfolio_set = PortfolioSetFactory.create(name='set', risk_free_rate=0.01, asset_classes=asset_classes) self.goal = GoalFactory.create(approved_settings=self.goal_settings, cash_balance=100, portfolio_set=portfolio_set) Fixture1.create_execution_details(self.goal, self.t1, 5, 4, date(2016, 1, 1)) Fixture1.create_execution_details(self.goal, self.t2, 5, 4, date(2016, 1, 1)) Fixture1.create_execution_details(self.goal, self.t3, 5, 90, date(2016, 1, 1)) Fixture1.create_execution_details(self.goal, self.t4, 5, 90, date(2016, 1, 1)) Fixture1.create_execution_details(self.goal, self.t4, 5, 90, date(2016, 1, 1)) self.data_provider = DataProviderDjango() self.execution_provider = ExecutionProviderDjango() MarkowitzScaleFactory.create() self.setup_performance_history() self.idata = get_instruments(self.data_provider)
def initialize_backtest(cls, tickers): ticker_list = list() equity_asset_class = AssetClassFactory\ .create(name='US_MUNICIPAL_BONDS', investment_type=InvestmentTypeFactory.create(name='US_MUNICIPAL_BONDS')) for t in tickers: market_index = MarketIndexFactory.create() ticker = TickerFactory.create(symbol=t, asset_class=equity_asset_class, benchmark=market_index) ticker_list.append(ticker) portfolio_set = PortfolioSetFactory.create( name='portfolio_set1', risk_free_rate=0.02, asset_classes=[equity_asset_class], portfolio_provider=get_default_provider()) goal_settings = GoalSettingFactory.create( target=100000, completion=datetime.date(2000, 1, 1), hedge_fx=False, rebalance=True, ) goal_metric = GoalMetricFactory.create( group=goal_settings.metric_group, type=GoalMetric.METRIC_TYPE_RISK_SCORE) PortfolioFactory.create(setting=goal_settings) #GoalMetricGroupFactory.create() return GoalFactory.create(account=Fixture1.personal_account1(), name='goal1', type=Fixture1.goal_type1(), cash_balance=10000, approved_settings=goal_settings, selected_settings=goal_settings, active_settings=goal_settings, portfolio_set=portfolio_set)
def test_calc_opt_inputs_no_assets_for_constraint(self): """ Makes sure when we have no assets filling a constraint, we behave appropriately. """ # This fund has a different feature to the one in the mix metric, but it is in the correct portfolio set. fund1 = TickerFactory.create() AssetFeatureValueFactory.create(assets=[fund1]) ps1 = PortfolioSetFactory.create(asset_classes=[fund1.asset_class]) # Create a settings object with a metric for a feature with no instruments in the current portfolio set. feature = AssetFeatureValueFactory.create() settings = GoalSettingFactory.create() risk_metric = GoalMetricFactory.create(group=settings.metric_group) mix_metric = GoalMetricFactory.create( group=settings.metric_group, type=GoalMetric.METRIC_TYPE_PORTFOLIO_MIX, feature=feature, comparison=GoalMetric.METRIC_COMPARISON_MAXIMUM, configured_val=.3) goal = GoalFactory.create(selected_settings=settings, portfolio_set=ps1) # The below fund has the desired feature, but is not in the goal's portfolio set. fund2 = TickerFactory.create() feature.assets.add(fund2) # Create some instrument data for the two assets self.m_scale = MarkowitzScaleFactory.create() # populate the data needed for the prediction # We need at least 500 days as the cycles go up to 70 days and we need at least 7 cycles. populate_prices(500, asof=mocked_now.date()) populate_cycle_obs(500, asof=mocked_now.date()) populate_cycle_prediction(asof=mocked_now.date()) data_provider = DataProviderDjango() idata = build_instruments(data_provider) execution_provider = ExecutionProviderDjango() # Get the opt inputs, there should be no constraint for the max for the feature with no funds. result = calc_opt_inputs(settings=settings, idata=idata, data_provider=data_provider, execution_provider=execution_provider) xs, lam, constraints, settings_instruments, settings_symbol_ixs, lcovars = result self.assertEqual(len(constraints), 3) # All positive, and sum to 1 # Then create a fund in the portfolio I want. We should get a constraint for the maximum for the feature. fund3 = TickerFactory.create(asset_class=fund1.asset_class) feature.assets.add(fund3) delete_data() populate_prices(500, asof=mocked_now.date()) populate_cycle_obs(500, asof=mocked_now.date()) populate_cycle_prediction(asof=mocked_now.date()) idata = build_instruments(data_provider) result = calc_opt_inputs(settings=settings, idata=idata, data_provider=data_provider, execution_provider=execution_provider) xs, lam, constraints, settings_instruments, settings_symbol_ixs, lcovars = result self.assertEqual(len(constraints), 4) # All positive, sum to 1, and the max constraint