コード例 #1
0
            saveImage(img_dirs, "_remove_margin", img_remove_margin)

            # 扩充为正方形并缩小为256x256
            img_new = normalization(img_remove_margin)
            saveImage(img_dirs, "_new", img_new)

            # 打印信息到输出台
            printToConsole(start_time, f, count, total, 5)
            success += 1
        except Exception as e:
            # 错误情况
            saveError(e, out_dir, f)
            fail += 1

    end_time = datetime.datetime.now()
    expend = end_time - start_time
    print(
        "\n\ntotal: %d\nsuccessful: %d\nskip: %d\nfailed: %d\nExpend time: %s"
        % (total, success, skip, fail, expend))
    os.startfile(out_dir)


if __name__ == '__main__':
    file_path = "C:\\Study\\test\\old"
    out_dir = "C:\\Study\\test\\old_no_norm_no_sucessxxx"
    data = "new_data.txt"
    feature, label = loadData(data)
    # 直方图归一化
    # feature = handleHistogram(feature)
    w0 = ridgeRegression(feature, label, 0.5)
    handle(file_path, out_dir, (45, -45, 45, -45), w0)
コード例 #2
0
def test():

    inputNodes = 256
    hiddenNodes = 1000
    outputNodes = 150  # 输出的值个数
    learningRate = 0.1

    net = neuralNetwork(inputNodes, hiddenNodes, outputNodes, learningRate)

    # 读取训练数据集
    data, labels = loadData("new_data.txt")
    data = handleHistogram(data)
    m, n = numpy.shape(data)
    ######## 训练 #########
    iteration = 50  # 迭代次数
    for it in range(iteration):
        for i in range(m):
            inputs = data[i, :] + 0.01
            targets = numpy.zeros(outputNodes) + 0.0001  # 初始化输出节点,避免0
            targets[int(labels[i,
                               0])] = 0.99  # 将数据的每个标签的值置为0.99(避免1), 数据标签为0-155
            # 避免0和1是因为激活函数生成0和1是不可能

            net.train(inputs, targets)
            # print(targets, int(labels[i, 0]), inputs)
        #     break
        # break
        print("完成第 ", it, "次迭代")

    #############  测试 ##############
    predict_y = []
    result = []  # 存储test结果
    for i in range(m):

        inputs = data[i, :] + 0.01

        outputs = net.test(inputs)

        label = numpy.argmax(outputs)  # 找出最大索引,若训练正确则索引即为标签值
        predict_y.append(int(label))
        # print(label, labels[i, 0])
        # print(outputs)
        if label == labels[i, 0]:
            print("第 ", i, "成功!")
            result.append(1)
        else:
            print("第 ", i, "失败!")
            result.append(0)
        # break

    # 最终准确率
    result_array = numpy.asarray(result)  # asarray不会深度拷贝数组,占用内存少
    print("识别率 = ", result_array.sum() / result_array.size)

    actual_x = []  # 绘制直线的x轴坐标
    predict_x = []  # 绘制预测值的x坐标
    for i in labels:
        actual_x.append(int(i[0]))
        predict_x.append(int(i[0]))
    actual_y = actual_x  # 直线的y坐标

    # 得到预测值

    color = numpy.arctan2(predict_y, predict_x)
    # 绘制散点图
    plt.scatter(predict_x, predict_y, s=10, c=color, alpha=1)
    # 设置坐标轴范围
    plt.xlim([0, 150])
    plt.ylim([0, 150])

    plt.xlabel("actual value")
    plt.ylabel("prediction")
    plt.plot(actual_x, actual_y)
    plt.savefig("bp")
    plt.show()
コード例 #3
0
ファイル: plot.py プロジェクト: bouilli2wqx/Lookoop
# coding:UTF-8
# 2018-10-25
# https://blog.csdn.net/zchshhh/article/details/78215087

from api import handleHistogram, plotScatter, loadData
from regression import ridgeRegression

if __name__ == '__main__':
    print("loading data ...")
    feature, label = loadData("data.txt")
    feature = handleHistogram(feature, alpha=20000, is_total=True)
    # feature = handleHistogram(feature)

    w0 = ridgeRegression(feature, label, 0.5)
    plotScatter(feature, label, w0, [(0, 150), (0, 150)], "regression")
コード例 #4
0
    end_time = datetime.datetime.now()
    expend = end_time - start_time
    print("\n\ntotal: %d\nsuccessful: %d\nskip: %d\nfailed: %d\nExpend time: %s" %(total, success, skip, fail, expend))
    os.startfile(out_dir)


if __name__ == '__main__':
    file_path = r"C:\Study\test\bone\2"
    out_dir = "C:\\Study\\test\\softmax_norm_test"
    # weights_file = "weights.npy"
    # w0 = loadWeights(weights_file)
    # w0 = np.load(weights_file)
    # print(np.shape(w0))
    # print(w0)
    inputfile = "data.txt"
    feature, label = loadData(inputfile)
    feature = handleHistogram(feature)
    # print(np.shape(feature), np.shape(label))
    # print(feature)
    k = 256
    w0 = train(feature, label, k, 100000, 0.1)

    fp = open("pickle_weight_test.dat", "wb")
    pickle.dump(w0, fp)
    fp.close()

    handle(file_path, out_dir, (45,-45,45,-45), w0)

    # # 分割评估
    # file_path = "C:\\Study\\test\\100-gt" # 标准分割图像目录路径
    # out_dir = "C:\\Study\\test\\est_results" #结果保存目录
コード例 #5
0
# coding:UTF-8
# 2018-11-7
# 绘制像素均值-最佳阈值直方图

from api import loadData, getHistogramMean
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')

if __name__ == '__main__':
    print("loading data ...")
    feature, label = loadData("new_data.txt")
    # feature, label = dataFilter(feature, label)
    line_x, line_y = [], []
    x, y = [], []
    m, n = np.shape(feature)
    for i in range(m):
        mean = getHistogramMean(feature[i, :])
        x.append(int(mean))
        y.append(int(label[i, :]))
    print(x, y)
    color = np.arctan2(y, x)
    # 绘制散点图
    plt.scatter(x, y, s=10, c=color, alpha=1)
    # 设置坐标轴范围
    plt.xlim([0, 150])
    plt.ylim([0, 150])
    line_x = x
    line_y = x
    plt.xlabel("mean value")