def generate_decapitated_googlenet(net): """Generates the googlenet layers until the inception_5b/output. The output feature map is then used to feed into the lstm layers.""" google_layers = googlenet.googlenet_layers() google_layers[0].p.bottom[0] = "data" for layer in google_layers: net.f(layer) if layer.p.name == "inception_5b/output": break
def generate_decapitated_googlenet(net): """Generates the googlenet layers until the inception_5b/output. The output feature map is then used to feed into the lstm layers.""" google_layers = googlenet.googlenet_layers() google_layers[0].p.bottom[0] = "image" for layer in google_layers: if "loss" in layer.p.name: continue net.f(layer) if layer.p.name == "inception_5b/output": break
def generate_decapitated_googlenet(net): """Generates the googlenet layers until the inception_5b/output. The output feature map is then used to feed into the lstm layers.""" google_layers = googlenet.googlenet_layers() google_layers[0].p.bottom[0] = "data" for layer in google_layers: # if layer.p.type in ["Convolution", "InnerProduct"]: # for p in layer.p.param: # p.lr_mult *= 4 net.f(layer) if layer.p.name == "inception_5b/output": break
def generate_decapitated_googlenet(net, net_config): """Generates the googlenet layers until the inception_5b/output. The output feature map is then used to feed into the lstm layers.""" google_layers = googlenet.googlenet_layers() google_layers[0].p.bottom[0] = "image" for layer in google_layers: if "loss" in layer.p.name: continue if layer.p.type in ["Convolution", "InnerProduct"]: for p in layer.p.param: p.lr_mult *= net_config["googlenet_lr_mult"] net.f(layer) if layer.p.name == "inception_5b/output": break
def generate_decapitated_googlenet(net, net_config): """Generates the googlenet layers until the inception_5b/output. The output feature map is then used to feed into the lstm layers.""" google_layers = googlenet.googlenet_layers() google_layers[0].p.bottom[0] = "image" for layer in google_layers: if "loss" in layer.p.name: continue if layer.p.type in ["Convolution", "InnerProduct"]: for p in layer.p.param: p.lr_mult *= net_config["googlenet_lr_mult"] net.f(layer) if layer.p.name == "inception_3b/output": net.f(''' name: "pool_final" type: "Pooling" bottom: "inception_3b/output" top: "inception_final_output" pooling_param { kernel_size: 4 stride: 4 }''') break