コード例 #1
0
    def testATM(self):
        put = Option(100, 100, 5/365, 0.05, is_call=False)
        print(put.getInfo())
        print(put.getPrice(0.21))
        print(put.getImpliedVol(1))

        call = Option(100, 100, 5/365, 0.05, is_call=True)
        print(call.getInfo())
        print(call.getPrice(0.21))
        print(call.getImpliedVol(1))
コード例 #2
0
    def testOTM(self):
        put = Option(105, 100, 1/365, 0.05, is_call=False)
        print(put.getInfo())
        print(put.getPrice(0.25))
        print(put.getImpliedVol(0))

        call = Option(95, 100, 1/365, 0.05, is_call=True)
        print(call.getInfo())
        print(call.getPrice(0.25))
        print(call.getImpliedVol(0))
コード例 #3
0
    def testITM(self):
        put = Option(95, 100, 30/365, 0.05, is_call=False)
        print(put.getInfo())
        print(put.getPrice(0.25))
        print(put.getImpliedVol(5.6577))

        call = Option(105, 100, 30/365, 0.05, is_call=True)
        print(call.getInfo())
        print(call.getPrice(0.25))
        print(call.getImpliedVol(6.391))
コード例 #4
0
    def testSELLSimpleDynaDeltaCall(self):
        pf_shares = []
        shares_purchased = []
        trxn_costs = []
        deltas = []
        option_price = []
        underlying_price = []

        vol = 0.20
        T = 20 / 365
        stk = 50
        underlyingP = 49
        underlying_price.append(underlyingP)

        call = Option(underlyingP, stk, T, .05, is_call=True)
        delta_start = -call.getGreeks(vol)[
            'delta']  #NEGATIVE BECAUSE SOLD OPTION
        deltas.append(delta_start)

        opt_cost = -call.getPrice(vol)  #NEGATIVE BECAUSE SOLD
        option_price.append(opt_cost)

        shares_owned = -delta_start * 100
        pf_shares.append(shares_owned)

        trxn_costs.append(shares_owned * underlyingP)
        shares_purchased.append(shares_owned)
        for i in range(20):
            T = max(T - 1 / 365, 0)
            if i % 2 == 0:
                underlyingP = underlyingP + 0.8
                underlying_price.append(underlyingP)
            else:
                underlyingP = underlyingP - 0.5
                underlying_price.append(underlyingP)
            call.setUnderlyingP(underlyingP)
            call.setTimetoMaturity(T)
            opt_prc = -call.getPrice(vol)  #NEG BC SOLD
            option_price.append(opt_prc)

            delta = -call.getGreeks(vol)[
                'delta']  #NEGATIVE BECAUSE SOLD OPTION
            deltas.append(delta)

            purchased_shares = -100 * delta - shares_owned
            shares_purchased.append(purchased_shares)

            shares_owned = shares_owned + purchased_shares
            pf_shares.append(shares_owned)

            cost_of_shares = purchased_shares * underlyingP
            trxn_costs.append(cost_of_shares)

        df = pd.DataFrame([
            underlying_price, deltas, pf_shares, shares_purchased, trxn_costs,
            option_price
        ]).T
        df.columns = [
            'underlying_price', 'deltas', 'pf_shares', 'shares_purchased',
            'trxn_costs', 'option_price'
        ]
        #assume position is closed at mkt close or hedged at mkt close
        df['cum_trxn_costs'] = df['trxn_costs'].cumsum()
        df['earlyexit_share_pnl'] = df['pf_shares'].shift(
            1) * df['underlying_price'] - df['cum_trxn_costs'].shift(1)
        df['earlyexit_option_pnl'] = (df['option_price'] - opt_cost) * 100
        df['earlyexit_pnl'] = df['earlyexit_share_pnl'] + df[
            'earlyexit_option_pnl']
        expiration_pnl = df['earlyexit_pnl'].loc[len(df['earlyexit_pnl']) - 1]
        df['underlying_price'].plot()
        plt.axhline(stk, color='red')
        plt.show()
        print("PNL on Expiration: {}".format(expiration_pnl))
        print("Realized Vol: {}".format(
            pd.Series(underlying_price).pct_change().std() * np.sqrt(252)))
        print(df)
        self.assertEquals(round(expiration_pnl, 5), -18.85561)
コード例 #5
0
    def testBUYSimpleDynaDeltaCall(self):
        pf_shares = []
        shares_purchased = []
        trxn_costs = []
        deltas = []
        option_price = []
        underlying_price = []

        vol = 0.20
        T = 20 / 365
        stk = 50
        underlyingP = 49
        underlying_price.append(underlyingP)

        call = Option(underlyingP, stk, T, .05, is_call=True)
        delta_start = call.getGreeks(vol)['delta']
        deltas.append(delta_start)

        opt_cost = call.getPrice(vol)
        option_price.append(opt_cost)

        shares_owned = -delta_start * 100
        pf_shares.append(shares_owned)

        trxn_costs.append(shares_owned * underlyingP)
        shares_purchased.append(shares_owned)
        for i in range(20):
            T = max(T - 1 / 365, 0)
            if i % 2 == 0:
                underlyingP = underlyingP + 0.5
                underlying_price.append(underlyingP)
            else:
                underlyingP = underlyingP - 0.5
                underlying_price.append(underlyingP)
            call.setUnderlyingP(underlyingP)
            call.setTimetoMaturity(T)
            opt_prc = call.getPrice(vol)
            option_price.append(opt_prc)

            delta = call.getGreeks(vol)['delta']
            deltas.append(delta)

            purchased_shares = -100 * delta - shares_owned
            shares_purchased.append(purchased_shares)

            shares_owned = shares_owned + purchased_shares
            pf_shares.append(shares_owned)

            cost_of_shares = purchased_shares * underlyingP
            trxn_costs.append(cost_of_shares)

        df = pd.DataFrame([
            underlying_price, deltas, pf_shares, shares_purchased, trxn_costs,
            option_price
        ]).T
        df.columns = [
            'underlying_price', 'deltas', 'pf_shares', 'shares_purchased',
            'trxn_costs', 'option_price'
        ]
        df['pct_chg'] = df['underlying_price'].pct_change()
        #assume position is closed at mkt close or hedged at mkt close
        df['cum_trxn_costs'] = df['trxn_costs'].cumsum()
        df['earlyexit_share_pnl'] = df['pf_shares'].shift(
            1) * df['underlying_price'] - df['cum_trxn_costs'].shift(1)
        df['earlyexit_option_pnl'] = (df['option_price'] - opt_cost) * 100
        df['earlyexit_pnl'] = df['earlyexit_share_pnl'] + df[
            'earlyexit_option_pnl']
        expiration_pnl = df['earlyexit_pnl'].loc[len(df['earlyexit_pnl']) - 1]
        self.assertEquals(round(expiration_pnl, 5), 18.85561)
コード例 #6
0
    def testMCDynaDelta(self):
        pf_shares = []
        shares_purchased = []
        trxn_costs = []
        deltas = []
        option_price = []
        underlying_price = []
        chng = []

        #Approx historical returns with SPY
        SPY_df = web.DataReader('GLD', 'yahoo', dt.datetime(2019, 3, 29),
                                dt.datetime.today()).reset_index()
        SPY = SPY_df[['Date', 'Close']].set_index(
            'Date', drop=True).copy() * 10  #to convert to index val
        rets = SPY['Close'].pct_change().dropna()
        dist = CurveFitter(rets)
        #dist.fitGaussian()

        vol = 0.2157
        T = 31 / 365
        stk = 2000
        timesteps = int(T * 365)

        underlyingP = 1933
        underlying_price.append(underlyingP)

        call = Option(underlyingP, stk, T, .05, is_call=True)
        delta_start = call.getGreeks(vol)['delta']
        deltas.append(delta_start)

        opt_cost = call.getPrice(vol)
        option_price.append(opt_cost)

        shares_owned = -round(delta_start, 2) * 100  #int(round(b/5.0)*5.0)
        pf_shares.append(shares_owned)

        trxn_costs.append(shares_owned * underlyingP)
        shares_purchased.append(shares_owned)
        for i in range(timesteps):
            T = max(T - 1 / 365, 0)
            if i % 2 == 0:
                pct_chg = np.random.choice(
                    rets
                )  #round(dist.sampledist(st.t, 1.8768166491405975, 0.0, 0.01, 1).item(), 8)  #dist.samplenorm(1).item()
                chng.append(pct_chg)
                underlyingP = underlyingP + underlyingP * pct_chg  # + 30
                underlying_price.append(underlyingP)
            else:
                pct_chg = np.random.choice(
                    rets
                )  #round(dist.sampledist(st.t, 1.8768166491405975, 0.0, 0.01, 1).item(), 8) #dist.samplenorm(1).item()
                chng.append(pct_chg)
                underlyingP = underlyingP + underlyingP * pct_chg  # - 30
                underlying_price.append(underlyingP)
            call.setUnderlyingP(underlyingP)
            call.setTimetoMaturity(T)
            opt_prc = call.getPrice(vol)
            option_price.append(opt_prc)

            delta = call.getGreeks(vol)['delta']
            deltas.append(delta)

            purchased_shares = -100 * round(delta, 2) - shares_owned
            shares_purchased.append(purchased_shares)

            shares_owned = shares_owned + purchased_shares
            pf_shares.append(shares_owned)

            cost_of_shares = purchased_shares * underlyingP
            trxn_costs.append(cost_of_shares)

        df = pd.DataFrame([
            underlying_price, chng, deltas, pf_shares, shares_purchased,
            trxn_costs, option_price
        ]).T
        df.columns = [
            'underlying_price', 'pct_chg', 'deltas', 'pf_shares',
            'shares_purchased', 'trxn_costs', 'option_price'
        ]
        #assume position is closed at mkt close or hedged at mkt close
        df['cum_trxn_costs'] = df['trxn_costs'].cumsum()
        df['earlyexit_share_pnl'] = df['pf_shares'].shift(
            1) * df['underlying_price'] - df['cum_trxn_costs'].shift(1)
        df['earlyexit_option_pnl'] = (df['option_price'] - opt_cost) * 100
        df['earlyexit_pnl'] = df['earlyexit_share_pnl'] + df[
            'earlyexit_option_pnl']
        expiration_pnl = df['earlyexit_pnl'].loc[len(df['earlyexit_pnl']) - 1]
        df['underlying_price'].plot()
        plt.axhline(stk, color='red')
        plt.show()
        print("PNL on Expiration: {}".format(expiration_pnl))
        print("Realized Vol: {}".format(
            pd.Series(underlying_price).pct_change().std() * np.sqrt(252)))
        print(df)
コード例 #7
0
 def testTheta(self):
     put = Option(110, 100, 2, 0.05, is_call=False)
     print(put.getInfo())
     print(put.getPrice(0.25))
     print(put.getGreeks(.25))
コード例 #8
0
 def testVega(self):
     put = Option(50, 100, 1, 0.05, is_call=False)
     print(put.getInfo())
     print(put.getPrice(0.25))
     print(put.getGreeks(.25))
コード例 #9
0
def main():
    ticker = 'TGT'
    SPY_df = web.DataReader(ticker, 'yahoo', dt.datetime(2018, 3, 29),
                            dt.datetime.today()).reset_index()
    SPY = SPY_df[['Date', 'Close']].set_index(
        'Date', drop=True).copy() * 10  # to convert to index val
    data = SPY['Close'].pct_change().dropna()

    best_fit_name, best_fit_params = best_fit_distribution(data, 200, ax=None)
    best_dist = getattr(st, best_fit_name)
    pdf = make_pdf(best_dist, best_fit_params)

    plt.figure(figsize=(12, 8))
    ax = pdf.plot(lw=2, label='Fitted PDF', legend=True)
    data.plot(kind='hist',
              bins=50,
              density=True,
              alpha=0.5,
              label='Raw Data',
              legend=True,
              ax=ax)
    param_names = (
        best_dist.shapes +
        ', loc, scale').split(', ') if best_dist.shapes else ['loc', 'scale']
    param_str = ', '.join([
        '{}={:0.2f}'.format(k, v) for k, v in zip(param_names, best_fit_params)
    ])
    dist_str = '{}({})'.format(best_fit_name, param_str)
    ax.set_title(u'{} Returns Best Fit Distribution:  \n'.format(ticker) +
                 dist_str)
    ax.set_xlabel(u'Returns (%)')
    ax.set_ylabel('Frequency')
    ax.set_xlim([-.25, .25])
    dist = CurveFitter(data)
    sample_size = 100000
    resampled = dist.sampledist(st.nct, best_fit_params[0], best_fit_params[1],
                                best_fit_params[2], best_fit_params[3],
                                sample_size)
    resampled = pd.Series(resampled)
    bins = int(sample_size / 100)
    resampled.plot(kind='hist',
                   bins=bins,
                   density=True,
                   alpha=0.25,
                   label='Resampled Data',
                   legend=True,
                   ax=ax)
    plt.savefig("BestFit.png")
    plt.show()

    pf_shares = []
    shares_purchased = []
    trxn_costs = []
    deltas = []
    option_price = []
    underlying_price = []
    chng = []

    vol = 0.30
    T = 123 / 365
    stk = 170
    timesteps = int(T * 365)

    underlyingP = 149.58
    underlying_price.append(underlyingP)

    call = Option(underlyingP, stk, T, .05, is_call=True)
    delta_start = call.getGreeks(vol)['delta']
    deltas.append(delta_start)

    opt_cost = call.getPrice(vol)
    option_price.append(opt_cost)

    shares_owned = -round(delta_start, 2) * 100  # int(round(b/5.0)*5.0)
    pf_shares.append(shares_owned)

    trxn_costs.append(shares_owned * underlyingP)
    shares_purchased.append(shares_owned)
    for i in range(timesteps):
        T = max(T - 1 / 365, 0)
        if i % 2 == 0:
            pct_chg = round(
                dist.sampledist(best_dist, best_fit_params[0],
                                best_fit_params[1], best_fit_params[2],
                                best_fit_params[3], 1).item(),
                8) * 2 / 3  #dist.samplenorm(1).item()
            chng.append(pct_chg)
            underlyingP = underlyingP + underlyingP * pct_chg  # + 30
            underlying_price.append(underlyingP)
        else:
            pct_chg = round(
                dist.sampledist(best_dist, best_fit_params[0],
                                best_fit_params[1], best_fit_params[2],
                                best_fit_params[3], 1).item(),
                8)  #dist.samplenorm(1).item()
            chng.append(pct_chg)
            underlyingP = underlyingP + underlyingP * pct_chg  # - 30
            underlying_price.append(underlyingP)

        call.setUnderlyingP(underlyingP)
        call.setTimetoMaturity(T)
        opt_prc = call.getPrice(vol)
        option_price.append(opt_prc)

        delta = call.getGreeks(vol)['delta']
        deltas.append(delta)

        purchased_shares = -100 * round(delta, 2) - shares_owned
        shares_purchased.append(purchased_shares)

        shares_owned = shares_owned + purchased_shares
        pf_shares.append(shares_owned)

        cost_of_shares = purchased_shares * underlyingP
        trxn_costs.append(cost_of_shares)

    df = pd.DataFrame([
        underlying_price, chng, deltas, pf_shares, shares_purchased,
        trxn_costs, option_price
    ]).T
    df.columns = [
        'underlying_price', 'pct_chg', 'deltas', 'pf_shares',
        'shares_purchased', 'trxn_costs', 'option_price'
    ]
    # assume position is closed at mkt close or hedged at mkt close
    df['cum_trxn_costs'] = df['trxn_costs'].cumsum()
    df['earlyexit_share_pnl'] = df['pf_shares'].shift(
        1) * df['underlying_price'] - df['cum_trxn_costs'].shift(1)
    df['earlyexit_option_pnl'] = (df['option_price'] - opt_cost) * 100
    df['earlyexit_pnl'] = df['earlyexit_share_pnl'] + df['earlyexit_option_pnl']
    expiration_pnl = df['earlyexit_pnl'].loc[len(df['earlyexit_pnl']) - 1]
    df['underlying_price'].plot(
        color='blue',
        linewidth=3.0,
    )
    plt.axhline(stk, color='red', linewidth=5.0, linestyle='--')
    plt.title("Underlying Price Monte Carlo Simulation")
    plt.ylabel("Price")
    plt.xlabel("Days")
    plt.savefig("UnderlyingPrice.png")
    plt.show()
    print("PNL on Expiration: {}".format(expiration_pnl))
    print("Realized Vol: {}".format(
        pd.Series(underlying_price).pct_change().std() * np.sqrt(252)))
    print(df)