コード例 #1
0
    def serve(self, cycle):
        """
        Crating tasks and sending to broker
        :param cycle:
        :return:
        """
        # reset scenarios table
        db = DBAccess(env.DB_RESULT_NAME)
        db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_SENSITIVITY_COLLECTION_NAME)
        db.create_index(
            env.DB_GLOBAL_RESULT_COLLECTION_NAME,
            [("Cost PV", pymongo.DESCENDING), ("Scenario", pymongo.ASCENDING)]
        )
        db.create_index(
            env.DB_DETAILED_RESULT_COLLECTION_NAME,
            [("Scenario", pymongo.ASCENDING)]
        )
        db.save_to_db_no_check(env.DB_SENSITIVITY_COLLECTION_NAME, {"NH3": 0, "ACS": 0, "HCl": 0, "Raw water": 0,
                                                                    "Electricity": 0, "K09": 0, "Rock": 0,
                                                                    "Scenario": -1})

        data = []
        for i in range(cycle):
            data.append(json.dumps({
                "cycle": cycle,
                "phase": i,
                "db_name": env.DB_NAME,
                "logistics_lp": env.LOGISTICS_LP
            }))
        broker = Broker(env.RABBITMQ_SIMULATOR_QUEUE_NAME)
        broker.publish(data)
コード例 #2
0
def get_best_global_scenarios(quantile_step):
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)

    scenarios = db.get_records(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                               {}).sort([("Cost PV", DESCENDING)])
    step = int(quantile_step * scenarios.count())
    representative_scenarios = [
        scenarios.skip(step * i)[0]
        for i in range(0, int(scenarios.count() / step))
    ]
    db.save_to_db_no_check(env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME,
                           representative_scenarios)
コード例 #3
0
def simulate(cycle=1, phase=0, use_db=False):
    if use_db:
        db = DBAccess(env.DB_RESULT_NAME)
        db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
    scenarios_global, scenarios_details = Simulator().simulate(
        cycle, phase, logistics_lp=False)
    if use_db:
        for scenario in scenarios_global:
            db.save_to_db_no_check(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                   scenarios_global[scenario])

        for scenario in scenarios_details:
            json_data = json.dumps(NodeJSONEncoder().encode(
                scenarios_details[scenario]))
            data = json.loads(json.loads(json_data))
            db.save_to_db_no_check(env.DB_DETAILED_RESULT_COLLECTION_NAME,
                                   data)
コード例 #4
0
def insert_history(phase, task_to_save, status, message):
    """
    Insert history for monitoring
    :param phase: Int
    :param task_to_save: Dict
    :param status: Int
    :param message: String
    :return: None
    """
    query_insert = dict()
    query_insert['phase'] = phase
    query_insert['status'] = status
    query_insert['message'] = message
    query_insert['time_start'] = task_to_save['time_start']
    query_insert['time_end'] = datetime.datetime.now().strftime("%d/%m/%y %H:%M:%S")
    query_insert['db_name'] = task_to_save['db_name']
    query_insert['total_scenario'] = task_to_save['total_scenario']
    db = DBAccess(env.MONITORING_DB_NAME)
    db.save_to_db_no_check(env.MONITORING_COLLECTION_HISTORY_NAME, query_insert)
コード例 #5
0
def get_best_detailed_scenarios(quantile_step):
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)

    scenarios = db.get_fields(env.DB_GLOBAL_RESULT_COLLECTION_NAME, {
        "Cost PV": 1,
        "Scenario": 1
    }, [("Cost PV", DESCENDING)])
    step = int(quantile_step * scenarios.count())
    points = [
        scenarios.skip(step * i)[0]["Scenario"]
        for i in range(0, int(scenarios.count() / step))
    ]
    representative_scenarios = db.get_records(
        env.DB_DETAILED_RESULT_COLLECTION_NAME, {"Scenario": {
            "$in": points
        }})
    db.save_to_db_no_check(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME,
                           representative_scenarios)
コード例 #6
0
def get_best_scenarios(quantile_step, db_name="mine2farm"):
    update_cache(db_name, -1)
    try:
        time_start = datetime.datetime.now().strftime("%d/%m/%y %H:%M:%S")

        # insert status of best scenarios "running"
        db_history = DBAccess(env.MONITORING_DB_NAME)
        query_insert = {
            'time_start': time_start,
            'db_name': db_name,
            'quantile_step': quantile_step,
            'status': -1
        }
        _id = db_history.save_to_db_no_check(
            env.MONITORING_COLLECTION_HISTORY_BEST_NAME, query_insert)

        # get best representative scenarios
        quantile_step = quantile_step / 100.
        reset_db_name(db_name)
        db = DBAccess(env.DB_RESULT_NAME)
        logger.info("Deleting best collections from DB")
        db.clear_collection(env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
        scenarios = db.get_records(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                   {}).sort([("Cost PV", DESCENDING)])

        scenarios_count = scenarios.count()
        step = int(quantile_step * scenarios_count)
        # save to db
        if step == 0:
            # all scenarios are concerned
            logger.info("Moving all scenarios to best collections")
            db.copy_to_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                  env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME)
            db.copy_to_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME,
                                  env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
            details_count = db.count(
                env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
        else:
            # filter on specific scenarios
            representative_scenario_ids = [
                scenarios.skip(step * i)[0]["Scenario"]
                for i in range(0, int(scenarios_count / step))
            ]
            logger.info("List of selected best scenarios: %s" %
                        representative_scenario_ids)
            # simulate
            scenarios_global, scenarios_details = \
                Simulator().simulate(scenarios_filter=representative_scenario_ids, logistics_lp=env.LOGISTICS_LP)
            # save
            for scenario in scenarios_global:
                db.save_to_db_no_check(
                    env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME,
                    scenarios_global[scenario])
            for scenario in scenarios_details:
                json_data = json.dumps(NodeJSONEncoder().encode(
                    scenarios_details[scenario]))
                data = json.loads(json.loads(json_data))
                db.save_to_db_no_check(
                    env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME, data)
            details_count = len(scenarios_details)

        # status update
        query_insert['global_count'] = scenarios_count
        query_insert['detailed_count'] = details_count
        filter_ = {'_id': ObjectId(_id)}
        db_history.update_record(
            collection=env.MONITORING_COLLECTION_HISTORY_BEST_NAME,
            filter_=filter_,
            data=query_insert)

        # raw materials sensitivities
        logger.info("Running sensitivity over raw materials")
        db.clear_collection(env.DB_SENSITIVITY_COLLECTION_NAME)
        raw_materials_df = Driver().get_data("raw_materials")
        shocks = {}
        for raw_material in raw_materials_df:
            item = raw_material["Item"]
            shocks[item] = 1
        scenarios_df = pd.DataFrame(Driver().get_results(
            env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME))
        scenarios_dic = Utils.get_scenario_from_df(scenarios_df)
        risk_engine = RiskEngine()

        for scenario_id in scenarios_dic:
            deltas = risk_engine.compute_delta(scenarios_dic[scenario_id],
                                               shocks,
                                               with_logistics=env.LOGISTICS_LP)

            deltas['Scenario'] = int(scenario_id)
            db.save_to_db_no_check(env.DB_SENSITIVITY_COLLECTION_NAME, deltas)

        # status update
        query_insert['time_end'] = datetime.datetime.now().strftime(
            "%d/%m/%y %H:%M:%S")
        query_insert['status'] = 0
        filter_ = {'_id': ObjectId(_id)}
        db_history.update_record(
            collection=env.MONITORING_COLLECTION_HISTORY_BEST_NAME,
            filter_=filter_,
            data=query_insert)
        update_cache(db_name, 0)

    except Exception as e:
        logger.error("Best scenarios failed")
        update_cache(db_name, 0)
コード例 #7
0
from app.config.env_func import reset_db_name
from app.config.env import DB_SENSITIVITY_COLLECTION_NAME
from app.data.DBAccess import DBAccess
import pandas as pd
import app.config.env as env
from app.data.Client import Driver
from app.risk.RiskEngine import RiskEngine
from tqdm import tqdm
import json
from app.tools import Utils

if __name__ == "__main__":
    reset_db_name('mine2farm')
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(DB_SENSITIVITY_COLLECTION_NAME)
    raw_materials_sensitivity = []
    raw_materials_df = Driver().get_data("raw_materials")
    shocks = {}
    for raw_material in raw_materials_df:
        item = raw_material["Item"]
        shocks[item] = 1
    #scenarios_df = pd.DataFrame(Driver().get_results(DB_GLOBAL_BEST_RESULT_COLLECTION_NAME))
    scenarios_df = pd.read_csv(env.APP_FOLDER + "outputs/global.csv")
    scenarios_dic = Utils.get_scenario_from_df(scenarios_df)
    for scenario_id in scenarios_dic:
        risk_engine = RiskEngine()
        deltas = risk_engine.compute_delta(scenarios_dic[scenario_id], shocks)
        deltas['Scenario'] = int(scenario_id)
        db.save_to_db_no_check(DB_SENSITIVITY_COLLECTION_NAME, deltas)