コード例 #1
0
from app.nlu.entity_extractor import EntityExtractor
from app.intents.models import Intent

from app import app
from app.nlu.intent_classifer import IntentClassifier

from app import my_signals
model_updated_signal = my_signals.signal('model-updated')


def train_models():
    """
    Initiate NER and Intent Classification training
    :return:
    """
    # generate intent classifier training data
    intents = Intent.objects

    if not intents:
        raise Exception("NO_DATA")

    # train intent classifier on all intents
    train_intent_classifier(intents)

    # train ner model for each Stories
    for intent in intents:
        train_all_ner(str(intent.id), intent.trainingData)

    model_updated_signal.send(app, message="Training Completed.")

コード例 #2
0
from app.nlu.entity_extractor import EntityExtractor
from app.intents.models import Intent

from app import app
from app.nlu.classifiers.starspace_intent_classifier import EmbeddingIntentClassifier

from app import my_signals
model_updated_signal = my_signals.signal('model-updated')

def train_models():
    """
    Initiate NER and Intent Classification training
    :return:
    """
    # generate intent classifier training data
    intents = Intent.objects

    if not intents:
        raise Exception("NO_DATA")

    # train intent classifier on all intents
    train_intent_classifier(intents)

    # train ner model for each Stories
    for intent in intents:
        train_all_ner(str(intent.intentId), intent.trainingData)

    model_updated_signal.send(app,message="Training Completed.")

def train_intent_classifier(intents):