コード例 #1
0
def update_request(message):
    print('Receive', message)
    name = message['name']

    try:
        if name == 'landmarks': update_landmark()
        if name == 'model': update_model()
        if name == 'lfw': update_lfw()
        if name == 'output': update_output()
        if name == 'prediction': make_tests()
    except Exception as e:
        socketio_app.emit('finish-' + str(name),
                          {'error': "{}: {}".format(type(e).__name__, str(e))})
コード例 #2
0
def check_request(message):
    name = message['name']

    try:
        info = None

        if name == 'landmarks': info = get_landmark_info()
        if name == 'model': info = get_model_info()
        if name == 'lfw': info = get_lfw_info()
        if name == 'output': info = get_output_info()
        #if name == 'prediction': return

        if info:
            socketio_app.emit('finish-' + str(name), info)

    except Exception as e:
        socketio_app.emit('finish-' + str(name),
                          {'error': "{}: {}".format(type(e).__name__, str(e))})
コード例 #3
0
def download_and_extract_model(model_name, data_dir):
    if not os.path.exists(data_dir):
        os.makedirs(data_dir)

    file_id = model_dict[model_name]
    destination = os.path.join(data_dir, model_name + '.zip')
    if not os.path.exists(destination):
        print('Downloading model to %s' % destination)
        socketio_app.emit('log-landmark',
                          {'message': 'Downloading model to %s' % destination
                           })  # move emits to logging
        download_file_from_google_drive(file_id, destination)
        with zipfile.ZipFile(destination, 'r') as zip_ref:
            print('Extracting model to %s' % data_dir)
            socketio_app.emit('log-landmark',
                              {'message': 'Extracting model to %s' % data_dir
                               })  # move emits to logging
            zip_ref.extractall(data_dir)
コード例 #4
0
def update_lfw():
    socketio_app.emit('log-lfw', {'message': 'Start downloading...'})
    archive = absolute(app.config['FACE_NET_DATA_DIR']) + '.tar.gz'
    data = absolute(app.config['FACE_NET_DATA_DIR'])
    urllib.request.urlretrieve(app.config['FACE_NET_LWF_URL'], archive)
    socketio_app.emit('log-lfw', {'message': 'Extracting...'})
    os.makedirs(data, exist_ok=True)
    tar = tarfile.open(archive, "r:gz")
    tar.extractall(data)
    tar.close()
    os.remove(archive)
    socketio_app.emit('log-lfw', {'message': 'Done'})
    socketio_app.emit('finish-lfw', get_lfw_info())
コード例 #5
0
ファイル: preprocess.py プロジェクト: andreyladmj/flask
def preprocess(input_dir, output_dir, crop_dim):
    start_time = time.time()
    pool = mp.Pool(processes=mp.cpu_count())

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    for image_dir in os.listdir(input_dir):
        image_output_dir = os.path.join(output_dir, os.path.basename(os.path.basename(image_dir)))
        if not os.path.exists(image_output_dir):
            os.makedirs(image_output_dir)

    image_paths = glob.glob(os.path.join(input_dir, '**/*.jpg'))
    for index, image_path in enumerate(image_paths):
        image_output_dir = os.path.join(output_dir, os.path.basename(os.path.dirname(image_path)))
        output_path = os.path.join(image_output_dir, os.path.basename(image_path))
        pool.apply_async(preprocess_image, (image_path, output_path, crop_dim))

    pool.close()
    pool.join()
    logger.info('Completed in {} seconds'.format(time.time() - start_time))
    socketio_app.emit('log-lfw', {'message': 'Completed in {} seconds'.format(time.time() - start_time)}) # move emits to logging
コード例 #6
0
def update_landmark():
    socketio_app.emit('log-landmark', {'message': 'Start downloading...'})
    file = absolute(app.config['FACE_NET_LANDMARKS_FILE'])
    archive = file + '.bz2'
    urllib.request.urlretrieve(app.config['FACE_NET_LANDMARKS_URL'], archive)
    socketio_app.emit('log-landmark', {'message': 'Extracting...'})

    with open(file, 'wb') as new_file, bz2.BZ2File(archive, 'rb') as bz2_file:
        for bytes in iter(lambda: bz2_file.read(100 * 1024), b''):
            #for bytes in file.read():
            new_file.write(bytes)

    os.remove(archive)
    socketio_app.emit('log-landmark', {'message': 'Done'})
    socketio_app.emit('finish-landmark', get_landmark_info())
コード例 #7
0
def update_model():
    socketio_app.emit('log-model', {'message': 'Start updating...'})
    download_and_extract_model('20170511-185253',
                               absolute(app.config['FACE_NET_WEIGHTS_DIR']))
    socketio_app.emit('log-model', {'message': 'Done'})
    socketio_app.emit('finish-model', get_model_info())
コード例 #8
0
def make_tests():
    crop_dim = 180
    print('make_tests')
    socketio_app.emit('log-prediction', {'message': 'Start making tests...'})
    im1 = '/home/srivoknovski/Python/flask/acme/Networks/FaceNet/data/lfw/Aaron_Peirsol/Aaron_Peirsol_0002.jpg'
    im2 = '/home/srivoknovski/Python/flask/acme/Networks/FaceNet/data/lfw/Aaron_Peirsol/Aaron_Peirsol_0004.jpg'
    im3 = '/home/srivoknovski/Python/flask/acme/Networks/FaceNet/data/lfw/Aaron_Tippin/Aaron_Tippin_0001.jpg'

    with open(im1, "rb") as image_file:
        socketio_app.emit('log-prediction', {'image': (image_file.read())})
    with open(im2, "rb") as image_file:
        socketio_app.emit('log-prediction', {'image': (image_file.read())})
    with open(im3, "rb") as image_file:
        socketio_app.emit('log-prediction', {'image': (image_file.read())})

    socketio_app.emit(
        'log-prediction', {
            'message':
            'preprocessing test images..., Crop dimension {}'.format(crop_dim)
        })
    images = []
    images.append(face_net_instance.process_image(im1, crop_dim))
    images.append(face_net_instance.process_image(im2, crop_dim))
    images.append(face_net_instance.process_image(im3, crop_dim))

    socketio_app.emit('log-prediction', {'message': 'loading model...'})
    model_path = absolute(app.config['FACE_NET_WEIGHTS_FILE'])
    embs = get_emmbedings(images=images, model_path=model_path)
    socketio_app.emit(
        'log-prediction', {
            'message':
            'Model path {} {}'.format(model_path, os.path.getsize(model_path))
        })

    diff1 = np.linalg.norm(embs[0] - embs[1])
    diff2 = np.linalg.norm(embs[0] - embs[2])

    print(im1, im2, np.linalg.norm(embs[0] - embs[1]))
    print(im1, im3, np.linalg.norm(embs[0] - embs[2]))
    socketio_app.emit('log-prediction', {'message': 'Done'})
    socketio_app.emit('finish-prediction', {
        'The same persons': str(diff1),
        'The different persons': str(diff2)
    })
コード例 #9
0
def update_output():
    socketio_app.emit('log-output', {'message': 'Start updating...'})
    output_dir = absolute(app.config['FACE_NET_OUTPUT_DIR'])
    preprocess(absolute(app.config['FACE_NET_DATA_DIR']), output_dir, 180)
    socketio_app.emit('log-output', {'message': 'Done'})
    socketio_app.emit('finish-output', get_output_info())