コード例 #1
0
def crnnRec(im, boxes, leftAdjust=False, rightAdjust=False, alph=0.2, f=1.0):
    """
   crnn模型,ocr识别
   @@model,
   @@converter,
   @@im:Array
   @@text_recs:text box
   @@ifIm:是否输出box对应的img
   
   """
    results = []
    im = Image.fromarray(im)
    for index, box in enumerate(boxes):

        degree, w, h, cx, cy = solve(box)
        partImg, newW, newH = rotate_cut_img(im, degree, box, w, h, leftAdjust,
                                             rightAdjust, alph)
        newBox = xy_rotate_box(cx, cy, newW, newH, degree)
        #        partImg_ = partImg.convert('L')
        #        simPred = crnnOcr(partImg_)##识别的文本
        #        if simPred.strip()!=u'':
        #             results.append({'cx':cx*f,'cy':cy*f,'text':simPred,'w':newW*f,'h':newH*f,'degree':degree*180.0/np.pi})
        results.append({
            'cx': cx * f,
            'cy': cy * f,
            'text': '',
            'w': newW * f,
            'h': newH * f,
            'degree': degree * 180.0 / np.pi
        })

    return results
コード例 #2
0
ファイル: main.py プロジェクト: djyangguang/pydd
    def ocr_batch(self, img, boxes, leftAdjustAlph=0.0, rightAdjustAlph=0.0):
        """
        batch for ocr
        """
        im = Image.fromarray(img)
        newBoxes = []
        for index, box in enumerate(boxes):
            partImg, box = rotate_cut_img(im, box, leftAdjustAlph,
                                          rightAdjustAlph)
            box['img'] = partImg.convert('L')
            newBoxes.append(box)

        res = self.ocrModel(newBoxes)
        return res
コード例 #3
0
def crnnRec(im, boxes, leftAdjust=False, rightAdjust=False, alph=0.2, f=1.0):
    """
    crnn模型,ocr识别
    leftAdjust,rightAdjust 是否左右调整box 边界误差,解决文字漏检
    """
    results = []
    im = Image.fromarray(im)
    for index, box in enumerate(boxes):
        degree, w, h, cx, cy = solve(box)
        partImg, newW, newH = rotate_cut_img(im, degree, box, w, h, leftAdjust, rightAdjust, alph)
        text = crnnOcr(partImg.convert('L'))
        if text.strip() != u'':
            results.append({'cx': cx * f, 'cy': cy * f, 'text': text, 'w': newW * f, 'h': newH * f,
                            'degree': degree * 180.0 / np.pi})

    return results
コード例 #4
0
ファイル: model.py プロジェクト: caiyueliang/chineseocr
def crnnRec(im,
            boxes,
            leftAdjust=False,
            rightAdjust=False,
            alph=0.2,
            f=1.0,
            save=True):
    """
    crnn模型,ocr识别
    leftAdjust, rightAdjust 是否左右调整box 边界误差,解决文字漏检
    """
    results = []
    # im = Image.fromarray(im)
    im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))

    for index, box in enumerate(boxes):
        degree, w, h, cx, cy = solve(box)

        # 按照box大小,裁剪图片
        partImg, newW, newH = rotate_cut_img(im, degree, box, w, h, leftAdjust,
                                             rightAdjust, alph)
        # partImg, newW, newH = cut_img = ()
        image_cv = cv2.cvtColor(numpy.asarray(partImg), cv2.COLOR_RGB2BGR)
        cv2.imshow("crnnRec", image_cv)
        # partImg = Image.fromarray(cv2.cvtColor(partImg, cv2.COLOR_BGR2RGB))

        # 图片会转灰度图,进行识别
        # print('crnnRec', partImg.size)
        text, w = crnnOcr(partImg.convert('L'))
        # text, w = crnnOcr(partImg)
        if save:
            image = partImg.resize((w, 32), Image.BILINEAR)
            save_image(image, text)

        # text = crnnOcr(partImg)
        if text.strip() != u'':
            results.append({
                'cx': cx * f,
                'cy': cy * f,
                'text': text,
                'w': newW * f,
                'h': newH * f,
                'degree': degree * 180.0 / np.pi
            })

    return results
コード例 #5
0
    def ocr_batch(self, img, boxes, leftAdjustAlph=0.0, rightAdjustAlph=0.0):
        """
        batch for ocr
        """
        im = Image.fromarray(img)
        newBoxes = []
        for index, box in enumerate(boxes):
            partImg, box = rotate_cut_img(im, box, leftAdjustAlph,
                                          rightAdjustAlph)  # 旋转裁切图片。
            box['img'] = partImg.convert(
                'L'
            )  #  L = R * 299/1000 + G * 587/1000+ B * 114/1000  转换。看下面这个,我明明转换成L了,为什么输出的图像还有颜色呢?不是应该是灰度图吗?

            newBoxes.append(box)

        res = self.ocrModel(newBoxes)
        return res
コード例 #6
0
    def ocr_batch(self, img, boxes, leftAdjustAlph=0.0, rightAdjustAlph=0.0):
        """
        batch for ocr
        """
        im = Image.fromarray(img)

        newBoxes = []
        for index, box in enumerate(boxes):
            partImg, box = rotate_cut_img(im, box, leftAdjustAlph,
                                          rightAdjustAlph)

            img = np.array(partImg)
            _, img_bright = cv.threshold(img, 200, 255, cv.THRESH_BINARY)
            # cv.imshow('mg0',img_bright)
            # cv.waitKey()
            box['img'] = partImg.convert('L')

            newBoxes.append(box)

        res = self.ocrModel(newBoxes)
        return res
コード例 #7
0
ファイル: model.py プロジェクト: guoyin90/chineseOCR-latest
def crnnRec(im,
            boxes,
            leftAdjust=False,
            rightAdjust=False,
            alph=0.2,
            f=1.0,
            tp_groups=None,
            boxAll=None,
            scoreAll=None):
    """
   crnn模型,ocr识别
   leftAdjust,rightAdjust 是否左右调整box 边界误差,解决文字漏检
   """
    results = []
    im = Image.fromarray(im)
    for index, box in enumerate(boxes):
        degree, w, h, cx, cy = solve(box)
        partImg, newW, newH = rotate_cut_img(im, degree, box, w, h, leftAdjust,
                                             rightAdjust, alph)
        text = crnnOcr(partImg.convert('L'))

        detailbox = boxAll[tp_groups[index]]
        detailscore = scoreAll[tp_groups[index]]
        detaildex = tp_groups[index]

        if text.strip() != u'':
            results.append({
                'cx': cx * f,
                'cy': cy * f,
                'text': text,
                'w': newW * f,
                'h': newH * f,
                'degree': degree * 180.0 / np.pi,
                'detailbox': detailbox,
                'detailscore': detailscore,
                'detaildex': detaildex
            })

#degree表示顺时针转多少度.
    return results
コード例 #8
0
    config['img'] = img
    text_recs = text_detect(**config)
    # print(text_recs)
    boxes = sorted(text_recs, key=lambda x: sum([x[1], x[3], x[5], x[7]]))
    i = 0
    filename = ntpath.basename(imgPath)
    ori_filename = romvChinese(filename)

    for index, box in enumerate(boxes):
        filename = ori_filename
        degree, w, h, cx, cy = solve(box)
        partImg, newW, newH = rotate_cut_img(img,
                                             degree,
                                             box,
                                             w,
                                             h,
                                             leftAdjust=True,
                                             rightAdjust=True,
                                             alph=0.2)
        if partImg.size[1] < 32:
            scale = partImg.size[1] * 1.0 / 32
            w = partImg.size[0] / scale
            w = int(w)
            partImg = partImg.resize((w, 32), Image.BILINEAR)
        filename = filename[:-4] + '_' + str(i) + '_.jpg'
        partImgPath = os.path.join(subdir, filename)
        partImg.save(partImgPath)
        i += 1
        img_count += 1
        # print('img_count: ', img_count)
        if img_count % subdir_interval == 0: