コード例 #1
0
 def select_komposisiModel(self):
     model_name = request.form['model_name']
     instance_Model = Models(
         "SELECT sentiment_count, sentiment_positive, sentiment_negative FROM tbl_model WHERE model_name = '"
         + model_name + "'")
     komposisi_model = instance_Model.select()
     return komposisi_model
コード例 #2
0
 def count_dataTraining(self):
     # SELECT data training
     instance_Model = Models(
         'SELECT COUNT(id) as jumlah FROM tbl_tweet_training WHERE clean_text IS NOT NULL AND sentiment_type IS NOT NULL'
     )
     data_training = instance_Model.select()
     return data_training[0]['jumlah']
コード例 #3
0
    def add_dataCrawling(self):
        aksi = request.form['aksi']

        instance_Api = Api()
        instance_Excel = Excel()

        # Fungsi CARI TWEET(crawling) : Ambil data menggunakan API Twitter ==> Simpan(data) ke Excel & Tampilkan(data) ke layar
        if aksi == 'crawling':
            kata_kunci = request.form['kata_kunci']
            tanggal_awal = request.form['tanggal_awal']
            tanggal_akhir = request.form['tanggal_akhir']

            # Ambil data menggunakan API Twitter (Tweepy)
            data_crawling = instance_Api.get_search(
                kata_kunci + ' -filter:retweets', tanggal_awal, tanggal_akhir)
            # Fungsi[1] : Simpan data_crawling ke dalam file Excel
            instance_Excel.save_excel_crawling(data_crawling)
            # Menampilkan data_crawling ke layar
            return json.dumps({'data_crawling': data_crawling})

        # Fungsi SIMPAN TWEET(crawling) : Ambil data dari excel(yang telah disimpan[1]) ==> Simpan ke Database
        if aksi == 'save_crawling':
            # Fungsi[2] : Membuat tuple dari file excel
            tuples_excel = instance_Excel.make_tuples_crawling()

            # Simpan ke Database dengan VALUES berupa tuple dari Fungsi[2]
            instance_Model = Models(
                'REPLACE INTO tbl_tweet_crawling(id, text, user, created_at) VALUES (%s, %s, %s, %s)'
            )
            instance_Model.query_sql_multiple(tuples_excel)
            return None
コード例 #4
0
    def delete_dataStopword(self):
        id = request.form['id']

        instance_Model = Models(
            'DELETE FROM tbl_stopword WHERE id_stopword = %s')
        instance_Model.query_sql(id)
        flash('Berhasil menghapus data.', 'success')
        return None
コード例 #5
0
	def add_dataLabeling(self):
		id = request.form['id']
		value = request.form['value']
		
		data_ubah = (value, id)
		instance_Model = Models('UPDATE tbl_tweet_clean SET sentiment_type=%s WHERE id=%s')
		instance_Model.query_sql(data_ubah)
		return 'Berhasil Melabeli Data!'
コード例 #6
0
    def delete_dataPositiveWord(self):
        id = request.form['id']

        instance_Model = Models(
            'DELETE FROM tbl_lexicon_positive WHERE id_positive = %s')
        instance_Model.query_sql(id)
        flash('Berhasil menghapus data.', 'success')
        return None
コード例 #7
0
    def add_dataPositiveWord(self):
        kata_positif = request.form['kata_positif'].strip()

        instance_Model = Models(
            'INSERT INTO tbl_lexicon_positive(positive_word) VALUES (%s)')
        instance_Model.query_sql(kata_positif.lower())
        flash('Berhasil menambahkan data.', 'success')
        return None
コード例 #8
0
    def add_dataStopword(self):
        stopword = request.form['stopword'].strip()

        instance_Model = Models(
            'INSERT INTO tbl_stopword(stopword) VALUES (%s)')
        instance_Model.query_sql(stopword.lower())
        flash('Berhasil menambahkan data.', 'success')
        return None
コード例 #9
0
    def update_dataStopword(self):
        id = request.form['id']
        stopword = request.form['stopword'].strip()

        data_ubah = (stopword.lower(), id
                     )  # Membuat tupple dari form data masukan

        instance_Model = Models(
            'UPDATE tbl_stopword SET stopword=%s WHERE id_stopword = %s')
        instance_Model.query_sql(data_ubah)
        flash('Berhasil mengubah data.', 'success')
        return None
コード例 #10
0
    def add_dataSlangword(self):
        slangword = request.form['slangword'].strip()
        kata_asli = request.form['kata_asli'].strip()

        data_tambah = (slangword.lower(), kata_asli.lower()
                       )  # Membuat tupple dari form data masukan

        instance_Model = Models(
            'INSERT INTO tbl_slangword(slangword, kata_asli) VALUES (%s,%s)')
        instance_Model.query_sql(data_tambah)
        flash('Berhasil menambahkan data.', 'success')
        return None
コード例 #11
0
    def update_dataPositiveWord(self):
        id = request.form['id']
        kata_positif = request.form['kata_positif'].strip()

        data_ubah = (kata_positif.lower(), id
                     )  # Membuat tupple dari form data masukan

        instance_Model = Models(
            'UPDATE tbl_lexicon_positive SET positive_word=%s WHERE id_positive = %s'
        )
        instance_Model.query_sql(data_ubah)
        flash('Berhasil mengubah data.', 'success')
        return None
コード例 #12
0
    def delete_dataModelling(self):
        id = request.form['id']

        instance_Model = Models('DELETE FROM tbl_model WHERE model_name = %s')
        instance_Model.query_sql(id)

        if os.path.exists('application/static/model_data/' + id):
            os.remove('application/static/model_data/' + id)
            flash(
                'Berhasil menghapus data. File (.json) model latih berhasil dihapus!',
                'success')
        else:
            flash('File (.json) model latih gagal dihapus!', 'error')
            print("\nFile tidak ditemukan!\n")
コード例 #13
0
    def import_fileExcelStopword(self):
        excel_file = request.files['excel_file']

        if (excel_file.filename.lower().endswith(('.xls', '.xlsx'))):
            instance_Excel = Excel()
            tuples_excel = instance_Excel.make_tuples_stopword(excel_file)
            # Simpan ke Database dengan VALUES berupa tuple
            instance_Model = Models(
                'INSERT INTO tbl_stopword(stopword) VALUES (%s)')
            instance_Model.query_sql_multiple(tuples_excel)
            return None
        flash(
            'Format file tidak sesuai! File excel harus ber-ekstensi .xls atau .xlsx',
            'error')
        return None
コード例 #14
0
    def import_fileExcelCrawling(self):
        excel_file = request.files['excel_file']

        if (excel_file.filename.lower().endswith(('.xls', '.xlsx'))):
            instance_Excel = Excel()
            tuples_excel = instance_Excel.make_tuples_crawling(excel_file)
            # Simpan ke Database dengan VALUES berupa tuple
            instance_Model = Models(
                'REPLACE INTO tbl_tweet_crawling(id, text, user, created_at) VALUES (%s, %s, %s, %s)'
            )
            instance_Model.query_sql_multiple(tuples_excel)
            return None
        flash(
            'Format file tidak sesuai! File excel harus ber-ekstensi .xls atau .xlsx',
            'error')
        return None
コード例 #15
0
    def count_sampleSentiment(self):
        # SELECT jumlah data training berdasarkan jenis sentimen
        instance_Model = Models(
            'SELECT COUNT(id) as jumlah FROM tbl_tweet_training WHERE clean_text IS NOT NULL AND sentiment_type IS NOT NULL GROUP BY sentiment_type'
        )
        data_max_sentiment = instance_Model.select()

        min = 999999  # asumsi jumlah minimal sentimen tidak lebih dari 999999
        # mencari jumlah minimal sentimen
        for data in data_max_sentiment:
            if data['jumlah'] < min:
                min = data['jumlah']

        if min == 999999:
            min = 0

        # nilai variable 'min' digunakan sebagai batas atas sample sentimen & nilai 'min*2' digunakan untuk mengetahui jumlah kuota sample
        return min, min * 2
コード例 #16
0
    def check_evaluation(self):
        nilai_k = int(request.form['nilai_k'])
        model_name = request.form['model_name']
        # Select data dari tbl_tweet_testing yang telah diberi label
        instance_Model = Models(
            'SELECT text, clean_text, sentiment_type FROM tbl_tweet_testing WHERE sentiment_type IS NOT NULL'
        )
        tweet_testing_label = instance_Model.select()

        tweet_list = []
        teks_list = []
        label_list = []
        for tweet in tweet_testing_label:
            tweet_list.append(tweet['text'])
            teks_list.append(tweet['clean_text'])
            label_list.append(tweet['sentiment_type'])

        # Memuat kembali model yang telah dibuat pada proses Pemodelan
        model = json.load(open('application/static/model_data/' + model_name))

        # akses ke kelas Vectorizer
        instance_Vectorizer = Vectorizer(teks_list, label_list)
        # membuat vektor berdasarkan model latih
        vector_list = instance_Vectorizer.test_vectorList(model)

        # akses ke kelas KNearestNeighbors
        instance_Klasification = KNearestNeighbors(nilai_k, model)
        data_dict = instance_Klasification.predict_labelList(vector_list)

        confusion_matrix = self.confusion_matrix(label_list,
                                                 data_dict['label_prediction'])

        # Membandingkan hasil prediksi (hasil) dengan sentimen yang sebenarnya (label_list)
        return json.dumps({
            'tweet_database': tweet_list,
            'teks_database': teks_list,
            'sentimen_database': label_list,
            'data_dict': data_dict,
            'confusion_matrix': confusion_matrix
        })
コード例 #17
0
    def login(self):

        username = request.form['username'].strip()
        kata_sandi = request.form['kata_sandi'].strip()

        # cek record (ada?)
        instance_Model = Models(
            'SELECT password, fullname FROM tbl_users WHERE username = %s')
        user = instance_Model.select_row(username)

        # record ditemukan
        if user != None:
            # cek kecocokan kata sandi
            if 'textmining_' + str(kata_sandi) + '_sentimentanalysis' == list(
                    user)[0]:
                # session['username'] = username
                session['fullname'] = list(user)[1]
                return True
            flash('Username atau Kata Sandi tidak sesuai.')
            return False
        flash('Username tidak terdaftar.')
        return False
コード例 #18
0
    def register(self):

        username = request.form['username'].strip()
        kata_sandi = request.form['kata_sandi'].strip()
        fullname = request.form['fullname'].strip()

        # cek record (ada?)
        instance_Model = Models(
            'SELECT password, fullname FROM tbl_users WHERE username = %s')
        user = instance_Model.select_row(username)

        # record TIDAK ditemukan
        if user == None:
            data_tambah = (username, 'textmining_' + str(kata_sandi) +
                           '_sentimentanalysis', fullname)
            # simpan data user
            instance_Model = Models(
                'INSERT INTO tbl_users(username, password, fullname) VALUES (%s, %s, %s)'
            )
            instance_Model.query_sql(data_tambah)
            flash('Berhasil mendaftar, silakan masuk.', 'success')
            return True
        flash('Username telah terdaftar.', 'error')
        return False
コード例 #19
0
    def create_dataModeling(self):
        sample_positive = request.form['sample_positive']
        sample_negative = request.form['sample_negative']
        jumlah_sample = int(sample_positive) + int(sample_negative)

        # if sample_positive == sample_negative == sample_netral:
        if sample_positive == sample_negative:
            list_data = [
            ]  # wadah untuk menyimpan data yang diperoleh dari database

            # Select data positif dari tbl_tweet_training sebanyak n record (berdasarkan variabel sample)
            instance_Model = Models(
                "SELECT clean_text, sentiment_type FROM tbl_tweet_training WHERE clean_text IS NOT NULL AND sentiment_type = 'positif' ORDER BY RAND() LIMIT "
                + sample_positive)
            list_data.append(instance_Model.select())
            # Select data negatif dari tbl_tweet_training sebanyak n record (berdasarkan variabel sample)
            instance_Model = Models(
                "SELECT clean_text, sentiment_type FROM tbl_tweet_training WHERE clean_text IS NOT NULL AND sentiment_type = 'negatif' ORDER BY RAND() LIMIT "
                + sample_negative)
            list_data.append(instance_Model.select())

            teks_list = [
            ]  # wadah untuk tweet (clean_text) yang akan dijadikan sebagai model latih
            label_list = [
            ]  # wadah untuk sentimen (sentiment_type) yang akan dijadikan sebagai model latih

            # set data untuk teks_list dan label_list menggunakan data yang telah diambil dari database
            # for index_luar in range(3):
            for index_luar in range(2):
                for index_dalam in range(len(list_data[index_luar])):
                    clean_text = list_data[index_luar][index_dalam][
                        'clean_text']
                    sentiment_type = list_data[index_luar][index_dalam][
                        'sentiment_type']

                    teks_list.append(clean_text)
                    label_list.append(sentiment_type)

            # akses ke kelas Vectorizer
            instance_Vectorizer = Vectorizer(teks_list, label_list)
            # membuat vektor angka
            data_dict = instance_Vectorizer.create_vectorList()

            model_name = 'sentiment_model(' + datetime.today().strftime(
                '%d-%m-%Y %H%M%S') + ').json'
            # model_name = 'sentiment_model('+ datetime.today().strftime('%d-%m-%Y') +').json'

            # Menyimpan model kedalam bentuk .json agar dapat digunakan kembali (untuk proses Evaluasi & Prediksi)
            with open('application/static/model_data/' + model_name,
                      'w') as outfile:
                json.dump(data_dict, outfile, indent=4)

            # Membuat tuple untuk simpan data
            data_simpan = (model_name, jumlah_sample, sample_positive,
                           sample_negative)

            # Insert model ke dalam database
            instance_Model = Models(
                'REPLACE INTO tbl_model(model_name, sentiment_count, sentiment_positive, sentiment_negative) VALUES (%s, %s, %s, %s)'
            )
            # Menjadikan tuple sebagai argumen untuk method query_sql
            instance_Model.query_sql(data_simpan)

            return {
                'model_name': model_name,
                'sentiment_count': jumlah_sample,
                'sentiment_positive': sample_positive,
                'sentiment_negative': sample_negative,
                'data_dict': data_dict
            }
        return {'error': 'Gagal Membuat Model Latih'}
コード例 #20
0
 def select_dataModel(self):
     instance_Model = Models('SELECT * FROM tbl_model')
     data_model = instance_Model.select()
     return data_model
コード例 #21
0
	def select_dataWithLabel(self):
		# SELECT data tweet yang TELAH diberi label
		instance_Model = Models('SELECT * FROM tbl_tweet_clean WHERE sentiment_type IS NOT NULL')
		data_withLabel = instance_Model.select()
		return data_withLabel
コード例 #22
0
	def add_dataLabelingKamus(self):
		aksi = request.form['aksi']

		# FUNGSI LABELING DENGAN KAMUS : Data teks bersih ==> Hitung Skor(Sentimen) ==> Pemberian Kelas Sentimen ==> Update ==> Tampilkan(data) ke layar
		if aksi == 'labelingKamus':
			# SELECT data tanpa label dari database
			instance_Model = Models('SELECT id, clean_text FROM tbl_tweet_clean WHERE sentiment_type IS NULL')
			data_noLabel = instance_Model.select()

			# SELECT data kata-kata & bobot positif dari database
			instance_Model = Models('SELECT positive_word FROM tbl_lexicon_positive')
			kamus_positive = instance_Model.select()

			# SELECT data kata-kata & bobot negative dari database
			instance_Model = Models('SELECT negative_word FROM tbl_lexicon_negative')
			kamus_negative = instance_Model.select()
			
			teks_data = [] # wadauh untuk clean_text agar bisa ditampilkan ke layar (response)
			skor_data = [] # wadauh untuk skor agar bisa ditampilkan ke layar (response)
			total_positive = [] # wadauh untuk jumlah positive agar bisa ditampilkan ke layar (response)
			total_negative = [] # wadauh untuk jumlah negatif agar bisa ditampilkan ke layar (response)

			jumlah_netral = 0	# menghitung tweet yang berskor = 0 atau sentimen netral

			data_ubah = []

			print('\n-- PROSES '+ str(len(data_noLabel)) +' DATA --')	# PRINT KE CMD
			for index, data_nL in enumerate(data_noLabel):	# loop data tweet yang belum memiliki label
				skor = 0
				count_positive = 0
				count_negative = 0

				# Menghitung jumlah skor pada teks bersih dengan kamus
				for clean_text in data_nL['clean_text'].split(): # Tokenizing
					for data_p in kamus_positive:	# loop data kata positif
						if clean_text == data_p['positive_word']:
							skor += 1
							count_positive += 1
							break
					for data_n in kamus_negative:	# loop data kata negatif
						if clean_text == data_n['negative_word']:
							skor -= 1
							count_negative += 1
							break
				
				# Klasifikasi sentimen berdasarkan skor
				if skor > 0:
					sentimen = 'positif'
				elif skor < 0:
					sentimen = 'negatif'
				else:
					jumlah_netral += 1
					continue

				try:
					data_ubah.append((sentimen, data_nL['id'])) # Membuat tuple sebagai isian untuk kueri UPDATE
					
					# Simpan data ke list
					teks_data.append(data_nL['clean_text'])
					skor_data.append(skor)
					total_positive.append(count_positive)
					total_negative.append(count_negative)
				except:
					print('\nGagal Mengubah Data '+ str(data['id']) +'\n')
					return None
				print(index+1)	# PRINT KE CMD
			
			# Menyimpan sentimen hasil dengan kueri UPDATE
			instance_Model = Models('UPDATE tbl_tweet_clean SET sentiment_type=%s WHERE id = %s')
			instance_Model.query_sql_multiple(data_ubah)

			print('\n-- SELESAI --\n')	# PRINT KE CMD
			# Menampilkan data ke layar
			return json.dumps({ 'teks_data': teks_data, 'total_positive': total_positive, 'total_negative': total_negative, 'skor_data': skor_data, 'jumlah_netral': jumlah_netral })
コード例 #23
0
 def delete_allDataCrawling(self):
     instance_Model = Models('DELETE FROM tbl_tweet_crawling')
     instance_Model.query_deleteAll()
     return None
コード例 #24
0
	def delete_allDataLabeling(self):
		instance_Model = Models('DELETE FROM tbl_tweet_clean WHERE sentiment_type IS NOT NULL')
		instance_Model.query_deleteAll()
		return None
コード例 #25
0
	def count_dataNoLabel(self):
		# SELECT jumlah clean data yang tidak memiliki label
		instance_Model = Models('SELECT COUNT(id) as jumlah FROM tbl_tweet_clean WHERE sentiment_type IS NULL')
		data_crawling = instance_Model.select()
		return data_crawling[0]['jumlah']
コード例 #26
0
    def get_visualisasiHasil(self):

        waktu_sekarang = datetime.today().strftime('%d-%m-%Y %H%M')

        try:
            # HISTOGRAM DISTRIBUSI WAKTU [START]
            instance_Model = Models(
                'SELECT DATE(created_at) as tanggal FROM tbl_tweet_clean WHERE clean_text IS NOT NULL AND sentiment_type IS NOT NULL'
            )
            data_distribusi_waktuTweet = instance_Model.select()

            # membuat list tanggal
            list_tanggal = [
                str(data['tanggal']) for data in data_distribusi_waktuTweet
            ]

            # set ukuran figure
            plt.subplots(figsize=(25, 10))
            plt.hist(list_tanggal, bins=125)
            # mengatur label
            plt.ylabel('Jumlah Tweet', fontsize=18)
            plt.xlabel('Tanggal Perolehan', fontsize=18)
            plt.xticks(rotation=45)
            # memunculkan garis pada figure
            plt.grid()

            # Simpan data matplotlib
            plt.savefig(
                'application/static/matplotlib/hist_distribusi_waktu(' +
                waktu_sekarang + ').png')
            # reset setting matplotlib menjadi default
            plt.cla()
            plt.clf()
            # HISTOGRAM DISTRIBUSI WAKTU [END]

            # PIE CHART SENTIMEN [START]
            instance_Model = Models(
                "SELECT COUNT(id) as jumlah FROM tbl_tweet_clean WHERE clean_text IS NOT NULL AND sentiment_type = 'positif'"
            )
            data_sentimentPositif = instance_Model.select()
            instance_Model = Models(
                "SELECT COUNT(id) as jumlah FROM tbl_tweet_clean WHERE clean_text IS NOT NULL AND sentiment_type = 'negatif'"
            )
            data_sentimentNegatif = instance_Model.select()

            data_P = int(data_sentimentPositif[0]['jumlah'])
            data_N = int(data_sentimentNegatif[0]['jumlah'])

            # membuat persentase data
            jumlah_data = data_P + data_N
            persentase_P = (data_P / jumlah_data) * 100
            persentase_N = (data_N / jumlah_data) * 100
            # membulatkan menjadi 2 desimal di belakang titik (.)
            persentase_P = round(persentase_P, 2)
            persentase_N = round(persentase_N, 2)

            list_countSentiment = [persentase_P, persentase_N]

            # set ukuran figure
            plt.subplots(figsize=(10, 10))
            plt.pie(list_countSentiment,
                    labels=[
                        'Positif (' + str(persentase_P) + ' %)',
                        'Negatif (' + str(persentase_N) + ' %)'
                    ],
                    colors=['#00c853', '#ff1744'],
                    startangle=90)
            plt.legend(title=" Tipe Sentimen ")

            # Simpan data matplotlib
            plt.savefig('application/static/matplotlib/pie_sentiment(' +
                        waktu_sekarang + ').png')

            # reset setting matplotlib menjadi default
            plt.cla()
            plt.clf()
            # PIE CHART SENTIMEN [END]

            # WORDCLOUD SENTIMEN [START]
            instance_Model = Models(
                "SELECT clean_text FROM tbl_tweet_clean WHERE clean_text IS NOT NULL AND sentiment_type = 'positif'"
            )
            data_sentimentPositif = instance_Model.select()
            instance_Model = Models(
                "SELECT clean_text FROM tbl_tweet_clean WHERE clean_text IS NOT NULL AND sentiment_type = 'negatif'"
            )
            data_sentimentNegatif = instance_Model.select()

            string_dataPositif = ""
            for data in data_sentimentPositif:
                string_dataPositif += str(data['clean_text']) + " "
            string_dataNegatif = ""
            for data in data_sentimentNegatif:
                string_dataNegatif += str(data['clean_text']) + " "

            wordcloud = WordCloud(
                width=800,
                height=400,
                background_color='black',
                collocations=False).generate(string_dataPositif)
            wordcloud.to_file(
                'application/static/wordcloud/wordcloud_visualisasiPositive(' +
                waktu_sekarang + ').png')
            wordcloud = WordCloud(
                width=800,
                height=400,
                background_color='black',
                collocations=False).generate(string_dataNegatif)
            wordcloud.to_file(
                'application/static/wordcloud/wordcloud_visualisasiNegative(' +
                waktu_sekarang + ').png')
            # WORDCLOUD SENTIMEN [END]
        except:
            if os.path.exists(
                    'application/static/matplotlib/hist_distribusi_waktu(' +
                    waktu_sekarang + ').png'):
                os.remove(
                    'application/static/matplotlib/hist_distribusi_waktu(' +
                    waktu_sekarang + ').png')
            else:
                print("\nFile tidak ditemukan!\n")
            if os.path.exists('application/static/matplotlib/pie_sentiment(' +
                              waktu_sekarang + ').png'):
                os.remove('application/static/matplotlib/pie_sentiment(' +
                          waktu_sekarang + ').png')
            else:
                print("\nFile tidak ditemukan!\n")
            return {'error': 'Terjadi Kesalahan!'}

        # mencari frekuensi dari kata sentimen positif
        counts = {}
        for word in string_dataPositif.split():
            if word in counts:
                counts[word] += 1
            else:
                counts[word] = 1
        frekuensi_P = dict(
            sorted(counts.items(), key=operator.itemgetter(1), reverse=True))

        # mencari frekuensi dari kata sentimen negatif
        counts = {}
        for word in string_dataNegatif.split():
            if word in counts:
                counts[word] += 1
            else:
                counts[word] = 1
        frekuensi_N = dict(
            sorted(counts.items(), key=operator.itemgetter(1), reverse=True))

        # set data yang akan dikembalikan
        data = {
            'jumlah_tweets': len(list_tanggal),
            'jumlah_p': data_P,
            'jumlah_n': data_N,
            'persentase_p': persentase_P,
            'persentase_n': persentase_N,
            'frekuensi_p': list(frekuensi_P.items())[:15],
            'frekuensi_n': list(frekuensi_N.items())[:15],
            'waktu': waktu_sekarang
        }

        return data
コード例 #27
0
 def select_dataStopword(self):
     instance_Model = Models('SELECT * FROM tbl_stopword')
     data_stopword = instance_Model.select()
     return data_stopword
コード例 #28
0
 def delete_allDataStopWord(self):
     instance_Model = Models('DELETE FROM tbl_stopword')
     instance_Model.query_deleteAll()
     return None
コード例 #29
0
	def select_dataNoLabel(self):
		# SELECT data tweet yang BELUM diberi label
		instance_Model = Models('SELECT id, text, clean_text FROM tbl_tweet_clean WHERE sentiment_type IS NULL')
		data_noLabel = instance_Model.select()
		return data_noLabel
コード例 #30
0
 def select_dataCrawling(self):
     instance_Model = Models('SELECT * FROM tbl_tweet_crawling')
     data_crawling = instance_Model.select()
     return data_crawling