コード例 #1
0
 def setStructures(self):
     self._struct_p = apprentice.monomialStructure(self.dim, self.m)
     self._struct_q = apprentice.monomialStructure(self.dim, self.n)
     from apprentice import tools
     self._M        = tools.numCoeffsPoly(self.dim, self.m)
     self._N        = tools.numCoeffsPoly(self.dim, self.n)
     self._K = 1 + self._m + self._n
コード例 #2
0
    def mkFromDict(self, pdict):
        self._scaler = apprentice.Scaler(pdict["scaler"])
        self._pcoeff = np.array(pdict["pcoeff"])
        self._qcoeff = np.array(pdict["qcoeff"])
        self._iterationinfo = pdict["iterationinfo"]
        self._dim = pdict["dim"]
        self._m = pdict["m"]
        self._n = pdict["n"]
        self._M = pdict["M"]
        self._N = pdict["N"]
        self._fittime = pdict["log"]["fittime"]
        self._strategy = pdict["strategy"]
        self._roboptstrategy = pdict["roboptstrategy"]
        self._localoptsolver = pdict["localoptsolver"]
        self._fitstrategy = pdict["fitstrategy"]
        self._trainingscale = pdict["trainingscale"]
        self._trainingsize = pdict["trainingsize"]
        self._penaltyparam = 0.0

        if (self.strategy == 1 or self.strategy == 2):
            self._ppenaltybin = pdict['chosenppenalty']
            self._qpenaltybin = pdict['chosenqpenalty']

        if (self.strategy == 2):
            self._penaltyparam = pdict['lambda']

        self._struct_p = apprentice.monomialStructure(self.dim, self.m)
        self._struct_q = apprentice.monomialStructure(self.dim, self.n)
コード例 #3
0
ファイル: cubicroots.py プロジェクト: HEPonHPC/apprentice
    def appgetonevardenom(x, y, app):
        import apprentice
        struct_q = apprentice.monomialStructure(datastore['dim'],
                                                datastore['n'])
        qcoeff = app.qcoeff
        a = 0
        b = 0
        c = 0
        d = 0
        for num, row in enumerate(struct_q):
            val = qcoeff[num] * (x**row[0] * y**row[1])
            if (row[2] == 0):
                d += val
            elif (row[2] == 1):
                c += val
            elif (row[2] == 2):
                b += val
            elif (row[2] == 3):
                a += val

        # z = -0.2345
        # fthis = a*z**3 + b*z**2 +c*z +d
        # fnorm = appevaldenom(x,y,z,app,0,0)
        # print(fthis,fnorm)
        return a, b, c, d
コード例 #4
0
ファイル: appset.py プロジェクト: HEPonHPC/apprentice
    def setStructures(self):
        omax_p = np.max([r.m for r in self._RA])
        omax_q = np.max([r.n if hasattr(r, "n") else 0 for r in self._RA])
        omax = max(omax_p, omax_q)

        self._structure = np.array(apprentice.monomialStructure(
            self.dim, omax),
                                   dtype=np.int32)
        S = self._structure
        # Gradient helpers
        self._NNZ = [
            np.where(self._structure[:, coord] != 0)
            for coord in range(self.dim)
        ]
        self._sred = np.array(
            [self._structure[nz][:, num] for num, nz in enumerate(self._NNZ)],
            dtype=np.int32)
        # Hessian helpers
        self._HH = np.ones((self.dim, self.dim, len(S)),
                           dtype=np.float64)  # Prefactors
        self._EE = np.full((self.dim, self.dim, len(S), self.dim),
                           S,
                           dtype=np.int32)  # Initial structures

        for numx in range(self.dim):
            for numy in range(self.dim):
                if numx == numy:
                    self._HH[numx][numy] = S[:, numx] * (S[:, numx] - 1)
                else:
                    self._HH[numx][numy] = S[:, numx] * S[:, numy]
                self._EE[numx][numy][:, numx] -= 1
                self._EE[numx][numy][:, numy] -= 1

        self._HNONZ = np.empty((self.dim, self.dim), dtype=tuple)
        for numx in range(self.dim):
            for numy in range(self.dim):
                self._HNONZ[numx][numy] = np.where(self._HH[numx][numy] > 0)

        # Jacobians for Hessian
        JF = self._SCLR.jacfac
        for numx in range(self.dim):
            for numy in range(self.dim):
                self._HH[numx][numy][self._HNONZ[numx][numy]] *= (JF[numx] *
                                                                  JF[numy])
コード例 #5
0
    def prepareCache(self):
        import apprentice
        orders = []
        for r in self._RA:
            orders.append(r.m)
            if hasattr(r, "n"):
                orders.append(r.n)

        omax = max(orders)
        self._structure = apprentice.monomialStructure(self.dim, omax)
        # Gradient helpers
        self._NNZ = [
            np.where(self._structure[:, coord] != 0)
            for coord in range(self.dim)
        ]
        self._sred = np.array(
            [self._structure[nz][:, num] for num, nz in enumerate(self._NNZ)])
        if self.dim == 1:
            self.recurrence = apprentice.monomial.recurrence1D
        else:
            self.recurrence = apprentice.monomial.recurrence
コード例 #6
0
    def setStructures(self):
        self._struct_p = apprentice.monomialStructure(self.dim, self.m)
        from apprentice import tools
        self._M = tools.numCoeffsPoly(self.dim, self.m)

        self._nnz = self._struct_p > 0
コード例 #7
0
ファイル: rappsipx.py プロジェクト: HEPonHPC/apprentice
def plotmntesterrperfile(jsonfile,testfile, desc,folder):
	minp = np.inf
	minq = np.inf
	maxp = 0
	maxq = 0
	miny0 = 0

	minl1 = np.inf
	minl2 = np.inf
	minlinf = np.inf
	pp = 0
	qq =0

	outfile1 = folder+"/"+desc+".299445.png"
	# outfile2 = folder+"/"+fno+"_index.299445.png"
	X_test, Y_test = readData(testfile)
	import json
	if jsonfile:
		with open(jsonfile, 'r') as fn:
			datastore = json.load(fn)
	from apprentice import monomial
	import apprentice

	for key in sorted(datastore.keys()):
		pdeg = datastore[key]['m']
		qdeg = datastore[key]['n']
		if(pdeg<minp):
			minp=pdeg
		if(qdeg<minq):
			minq=qdeg
		if pdeg > maxp:
			maxp = pdeg
		if qdeg > maxq:
			maxq = qdeg
	# print(minp,maxp,minq,maxq)
	error = np.zeros(shape = (maxp-minp+1,maxq-minq+1))
	for key in sorted(datastore.keys()):
		pdeg = datastore[key]['m']
		qdeg = datastore[key]['n']
		Y_pred = np.array([],dtype=np.float64)
		if('scaler' in datastore[key]):
			rappsip = RationalApproximationSIP(datastore[key])
			Y_pred = rappsip.predictOverArray(X_test)
			# print(Y_pred)
		else:
			structp = apprentice.monomialStructure(datastore[key]['dim'], pdeg)
			structq = apprentice.monomialStructure(datastore[key]['dim'], qdeg)
			for x in X_test:
				nnn = np.array(monomial.recurrence(x, structp))
				p = np.array(datastore[key]['pcoeff']).dot(nnn)
				ddd = np.array(monomial.recurrence(x, structq))
				q = np.array(datastore[key]['qcoeff']).dot(ddd)
				Y_pred = np.append(Y_pred,(p/q))
		# print(np.c_[Y_pred,Y_test])

		l1 = np.sum(np.absolute(Y_pred-Y_test))
		# print(l1)
		l2 = np.sqrt(np.sum((Y_pred-Y_test)**2))
		linf = np.max(np.absolute(Y_pred-Y_test))
		x000 = np.zeros(datastore[key]['dim'])
		y000 = rappsip.predict(x000)
		print("p%d q%d %f"%(pdeg,qdeg,y000))
		error[pdeg-minp][qdeg-minq] = l2
		if(minl2>l2):
			minl2 = l2
			minl1 = l1
			minlinf = linf
			print(linf)
			pp = pdeg
			qq = qdeg
			miny0 = y000
			# print(miiny0)

	import matplotlib as mpl
	import matplotlib.pyplot as plt

	mpl.rc('text', usetex = True)
	mpl.rc('font', family = 'serif', size=12)
	mpl.style.use("ggplot")
	cmapname   = 'viridis'
	plt.clf()
	print(error)

	markersize = 1000
	vmin = -4
	vmax = 2
	X,Y = np.meshgrid(range(minq,maxq+1),range(minp,maxp+1))
	# plt.scatter(X,Y , marker = 's', s=markersize, c = np.ma.log10(error), cmap = cmapname, vmin=vmin, vmax=vmax, alpha = 1)
	plt.scatter(X,Y , marker = 's', s=markersize, c = error, cmap = cmapname, alpha = 1)
	plt.xlabel("$n$")
	plt.ylabel("$m$")
	plt.xlim((minq-1,maxq+1))
	plt.ylim((minp-1,maxp+1))
	b=plt.colorbar()
	# b.set_label("$\log_{10}\\left|\\left|f - \\frac{p^m}{q^n}\\right|\\right|_2$")
	b.set_label("$\\left|\\left|f - \\frac{p^m}{q^n}\\right|\\right|_2$")
	plt.title("l1=%f, l2=%f, linf=%f y0=%f found at (%d,%d)"%(minl1,minl2,minlinf,pp,qq,miny0))
	plt.savefig(outfile1)
コード例 #8
0
ファイル: plotsinc.py プロジェクト: HEPonHPC/apprentice
def tablesinc(m, n, ts, table_or_latex):
    from apprentice import monomial
    print(apprentice.monomialStructure(3, 3))
    fname = "f20"

    larr = [10**-6, 10**-3]
    uarr = [2 * np.pi, 4 * np.pi]
    lbdesc = {0: "-6", 1: "-3"}
    ubdesc = {0: "2pi", 1: "4pi"}
    lblatex = {0: "$10^{-6}$", 1: "$10^{-3}$"}
    ublatex = {0: "$2\\pi$", 1: "$4\\pi$"}

    noisestr = ""

    folder = "%s%s_%s/sincrun" % (fname, noisestr, ts)
    if not os.path.exists(folder):
        print("folder %s not found")

    if not os.path.exists(folder + "/benchmarkdata"):
        os.mkdir(folder + '/benchmarkdata')

    data = {}
    for dim in range(2, 8):
        data[dim] = {}
        for numlb, lb in enumerate(larr):
            for numub, ub in enumerate(uarr):
                key = lbdesc[numlb] + ubdesc[numub]
                data[dim][key] = {}
                fndesc = "%s%s_%s_p%d_q%d_ts%s_d%d_lb%s_ub%s" % (
                    fname, noisestr, ts, m, n, ts, dim, lbdesc[numlb],
                    ubdesc[numub])
                file = folder + "/" + fndesc + '/out/' + fndesc + "_p" + str(
                    m) + "_q" + str(n) + "_ts" + ts + ".json"
                if not os.path.exists(file):
                    print("%s not found" % (file))
                    exit(1)

                if file:
                    with open(file, 'r') as fn:
                        datastore = json.load(fn)

                data[dim][key]['l2error'] = 0

                testfile = "%s/benchmarkdata/%s%s_d%d_lb%s_ub%s_test.csv" % (
                    folder, fname, noisestr, dim, lbdesc[numlb], ubdesc[numub])
                if not os.path.exists(testfile):
                    print("%s not found" % (testfile))
                    exit(1)
                bottom_or_all = all
                try:
                    X, Y = readData(testfile)
                except:
                    DATA = tools.readH5(testfile, [0])
                    X, Y = DATA[0]

                if (bottom_or_all == "bottom"):
                    testset = [i for i in range(trainingsize, len(X_test))]
                    X_test = X[testset]
                    Y_test = Y[testset]
                else:
                    X_test = X
                    Y_test = Y

                rappsip = RationalApproximationSIP(datastore)
                Y_pred_rappsip = rappsip.predictOverArray(X_test)
                Y_diff = (Y_pred_rappsip - Y_test)**2
                print(dim, key)
                print(np.c_[Y_test[1:10], Y_pred_rappsip[1:10], Y_diff[1:10]])
                l2allrappsip = np.sum((Y_pred_rappsip - Y_test)**2)
                l2allrappsip = np.sqrt(l2allrappsip)
                data[dim][key]['l2error'] = l2allrappsip

                rappsiptime = datastore['log']['fittime']
                rdof = int(datastore['M'] + datastore['N'])
                rnoiters = len(datastore['iterationinfo'])
                rpnnl = datastore['M'] - (dim + 1)
                rqnnl = datastore['N'] - (dim + 1)
                data[dim][key]['rappsiptime'] = rappsiptime
                data[dim][key]['rdof'] = rdof
                data[dim][key]['rnoiters'] = rnoiters
                data[dim][key]['rpnnl'] = rappsiptime
                data[dim][key]['rqnnl'] = rqnnl

    # print(data)
    s = ""
    if (table_or_latex == "table"):
        print("TBD")
    elif (table_or_latex == "latex"):
        for dim in range(2, 8):
            for numlb, lb in enumerate(larr):
                for numub, ub in enumerate(uarr):

                    key = lbdesc[numlb] + ubdesc[numub]
                    s += "%d&%d&%d&%s&%s&%.3f&%d&%.3f" % (
                        dim, data[dim][key]['rdof'], data[dim][key]['rqnnl'],
                        lblatex[numlb], ublatex[numub],
                        data[dim][key]['rappsiptime'],
                        data[dim][key]['rnoiters'], data[dim][key]['l2error'])
                    s += "\\\\\hline\n"
    # print(s)

    import matplotlib.pyplot as plt
    X = range(2, 8)
    rangearr = []
    labelarr = []
    for numub, ub in enumerate(uarr):
        for numlb, lb in enumerate(larr):
            rangearr.append(lbdesc[numlb] + ubdesc[numub])
            labelarr.append(lblatex[numlb] + " - " + ublatex[numub])
    for r in rangearr:
        Y = []
        for x in X:
            Y.append(data[x][r]['l2error'])
        plt.plot(X, np.log10(Y), linewidth=1)
    plt.legend(labelarr, loc='upper right')
    # plt.show()
    plt.savefig("/Users/mkrishnamoorthy/Desktop/sincerror.pdf")
    plt.clf()

    # ##############################################

    import matplotlib.pyplot as plt
    X = range(2, 8)
    rangearr = []
    labelarr = []
    for numub, ub in enumerate(uarr):
        for numlb, lb in enumerate(larr):
            rangearr.append(lbdesc[numlb] + ubdesc[numub])
            labelarr.append(lblatex[numlb] + " - " + ublatex[numub])
    for r in rangearr:
        Y = []
        for x in X:
            Y.append(data[x][r]['rnoiters'])
        plt.plot(X, np.log10(Y), linewidth=1)
    plt.legend(labelarr, loc='upper left')
    # plt.show()
    plt.savefig("/Users/mkrishnamoorthy/Desktop/sinc.pdf")
    plt.clf()

    exit(1)
    # ##############################################
    dim = 3
    fndesc = "%s%s_%s_p%d_q%d_ts%s_d%d_lb%s_ub%s" % (
        fname, noisestr, ts, m, n, ts, dim, lbdesc[0], ubdesc[1])
    file = folder + "/" + fndesc + '/out/' + fndesc + "_p" + str(
        m) + "_q" + str(n) + "_ts" + ts + ".json"
    if not os.path.exists(file):
        print("%s not found" % (file))

    if file:
        with open(file, 'r') as fn:
            datastore = json.load(fn)

    iterinfo = datastore['iterationinfo']
    print("#################")
    for iter in iterinfo:
        print(iter['robOptInfo']['robustArg'])
    print("#################")

    rappsip = RationalApproximationSIP(datastore)

    X1vals = np.arange(lb, ub, 0.1)
    X2vals = np.arange(lb, ub, 0.1)
    X3vals = np.arange(lb, ub, 0.1)
    print(len(X1vals) * len(X2vals) * len(X3vals))

    Y_pred = []
    Y_orig = []
    for x1 in X1vals:
        for x2 in X2vals:
            for x3 in X3vals:
                Y_pred.append(rappsip([x1, x2, x3]))
                Y_orig.append(sinc([x1, x2, x3], 3))
    l22 = np.sum((np.array(Y_pred) - np.array(Y_orig))**2)
    l22 = l22 / (len(X1vals) * len(X2vals) * len(X3vals))

    print("\nUnscaled\n")
    print(datastore['scaler'])
    print("#################")
    for iter in iterinfo:
        x = rappsip._scaler.unscale(iter['robOptInfo']['robustArg'])
        print(x)

    print("#################")
    print("Min max  for n=3 after final iteration")
    print(min(Y_pred), max(Y_pred))
    print(min(Y_orig), max(Y_orig))
    print("#################")

    print("#################")
    print("\nMean error after the final approximation = %f\n" % (l22))
    print("#################")

    datastore['pcoeff'] = iterinfo[0]['pcoeff']
    datastore['qcoeff'] = iterinfo[0]['qcoeff']
    rappsip = RationalApproximationSIP(datastore)
    lb = larr[0]
    ub = uarr[1]

    Y_pred = []
    Y_orig = []
    for x1 in X1vals:
        for x2 in X2vals:
            for x3 in X3vals:
                Y_pred.append(rappsip([x1, x2, x3]))
                Y_orig.append(sinc([x1, x2, x3], 3))
    print("#################")
    print("Min max  for n=3 after first iteration")
    print(min(Y_pred), max(Y_pred))
    print(min(Y_orig), max(Y_orig))
    l22 = np.sum((np.array(Y_pred) - np.array(Y_orig))**2)
    l22 = l22 / (len(X1vals) * len(X2vals) * len(X3vals))
    print("#################")
    print("\nMean error after the first approximation = %f\n" % (l22))
    print("#################")
    print("#################")
    print("#################")
    print("#################")
    # exit(1)
    # ##############################################
    # Plotting
    import matplotlib.pyplot as plt

    if file:
        with open(file, 'r') as fn:
            datastore = json.load(fn)

    iterinfo = datastore['iterationinfo']
    iterinfono = len(iterinfo)
    for iterno in range(iterinfono):
        if file:
            with open(file, 'r') as fn:
                datastore = json.load(fn)
        iterinfo = datastore['iterationinfo']
        datastore['pcoeff'] = iterinfo[iterno]['pcoeff']
        datastore['qcoeff'] = iterinfo[iterno]['qcoeff']
        rappsip = RationalApproximationSIP(datastore)
        fig = plt.figure(figsize=(15, 15))
        for num, s in enumerate(['x1=-1', 'x2=-1', 'x3-1']):
            other1 = []
            other2 = []
            Y_pred = []
            Y_orig = []
            q_pred = []

            for x2 in X1vals:
                for x3 in X1vals:
                    if (num == 0):
                        X111 = [lb, x2, x3]
                    if (num == 1):
                        X111 = [x2, lb, x3]
                    if (num == 2):
                        X111 = [x2, x3, lb]
                    other1.append(x2)
                    other2.append(x3)
                    Y_pred.append(rappsip(X111))
                    Y_orig.append(sinc(X111, 3))
                    X111 = rappsip._scaler.scale(np.array(X111))
                    q_pred.append(rappsip.denom(X111))

            # Y_pred = np.reshape(np.array(Y_pred), [len(other1), len(other2)])
            # Y_orig = np.reshape(np.array(Y_orig), [len(other1), len(other2)])
            # q_pred = np.reshape(np.array(q_pred), [len(other1), len(other2)])

            ax = fig.add_subplot(3, 3, 3 * num + 1, projection='3d')
            ax.plot3D(other1, other2, Y_orig, "b.", alpha=0.5)
            ax.set_xlabel("x2")
            ax.set_ylabel("x3")
            ax = fig.add_subplot(3, 3, 3 * num + 2, projection='3d')
            ax.plot3D(other1, other2, Y_pred, "r.", alpha=0.5)
            ax.set_xlabel("x2")
            ax.set_ylabel("x3")
            ax = fig.add_subplot(3, 3, 3 * num + 3, projection='3d')
            ax.plot3D(other1, other2, q_pred, "g.", alpha=0.5)
            ax.set_xlabel("x2")
            ax.set_ylabel("x3")
        plt.savefig("/Users/mkrishnamoorthy/Desktop/sinc/iter" + str(iterno) +
                    ".pdf")

        plt.clf()
    exit(1)
    # ##############################################
    dim = 4
    fndesc = "%s%s_%s_p%d_q%d_ts%s_d%d_lb%s_ub%s" % (
        fname, noisestr, ts, m, n, ts, dim, lbdesc[0], ubdesc[1])
    file = folder + "/" + fndesc + '/out/' + fndesc + "_p" + str(
        m) + "_q" + str(n) + "_ts" + ts + ".json"
    if not os.path.exists(file):
        print("%s not found" % (file))

    if file:
        with open(file, 'r') as fn:
            datastore = json.load(fn)

    iterinfo = datastore['iterationinfo']
    print("#################")
    for iter in iterinfo:
        print(iter['robOptInfo']['robustArg'])
    print("#################")

    rappsip = RationalApproximationSIP(datastore)

    X1vals = np.arange(lb, ub, 0.3)
    X2vals = np.arange(lb, ub, 0.3)
    X3vals = np.arange(lb, ub, 0.3)
    X4vals = np.arange(lb, ub, 0.3)
    for x1 in X1vals:
        for x2 in X2vals:
            for x3 in X3vals:
                for x4 in X4vals:
                    Y_pred.append(rappsip([x1, x2, x3, x4]))
                    Y_orig.append(sinc([x1, x2, x3, x4], 4))
    print("min max for n=4 after final iteration")
    print(min(Y_pred), max(Y_pred))
    print(min(Y_orig), max(Y_orig))
    l22 = np.sum((np.array(Y_pred) - np.array(Y_orig))**2)
    l22 = l22 / (len(X1vals) * len(X2vals) * len(X3vals) * len(X4vals))

    print(len(X1vals) * len(X2vals) * len(X3vals) * len(X4vals))

    print("\nUnscaled\n")
    print(datastore['scaler'])
    print("#################")
    for iter in iterinfo:
        x = rappsip._scaler.unscale(iter['robOptInfo']['robustArg'])
        print(x)
    print("#################")

    print("#################")
    print("Min max  for n=4 after final iteration")
    print(min(Y_pred), max(Y_pred))
    print(min(Y_orig), max(Y_orig))
    print("#################")
    print("#################")
    print("Mean error after the final approximation = %f\n" % (l22))
    print("#################")

    datastore['pcoeff'] = iterinfo[0]['pcoeff']
    datastore['qcoeff'] = iterinfo[0]['qcoeff']
    rappsip = RationalApproximationSIP(datastore)
    lb = larr[0]
    ub = uarr[1]

    Y_pred = []
    Y_orig = []
    for x1 in X1vals:
        for x2 in X2vals:
            for x3 in X3vals:
                for x4 in X4vals:
                    Y_pred.append(rappsip([x1, x2, x3, x4]))
                    Y_orig.append(sinc([x1, x2, x3, x4], 4))
    print("#################")
    print("Min max  for n=4 after final iteration")
    print(min(Y_pred), max(Y_pred))
    print(min(Y_orig), max(Y_orig))
    print("#################")
    l22 = np.sum((np.array(Y_pred) - np.array(Y_orig))**2)
    l22 = l22 / (len(X1vals) * len(X2vals) * len(X3vals) * len(X4vals))
    print("#################")
    print("\nMean error after the first approximation = %f\n" % (l22))