def batch_prediction_route_client(): """ * method: batch_prediction_route_client * description: method to call batch prediction route * return: none * * * Parameters * None """ try: config = Config() # get run id run_id = config.get_run_id() data_path = config.prediction_data_path # prediction object initialization predictModel = PredictModel(run_id, data_path) # prediction the model predictModel.batch_predict_from_model() return Response("Prediction successfull! and its RunID is : " + str(run_id)) except ValueError: return Response("Error Occurred! %s" % ValueError) except KeyError: return Response("Error Occurred! %s" % KeyError) except Exception as e: return Response("Error Occurred! %s" % e)
def single_prediction_route_client(): try: config = Config() #get run id run_id = config.get_run_id() data_path = config.prediction_data_path print('Test') if request.method == 'POST': satisfaction_level = request.form['satisfaction_level'] last_evaluation = request.form["last_evaluation"] number_project = request.form["number_project"] average_montly_hours = request.form["average_montly_hours"] time_spend_company = request.form["time_spend_company"] work_accident = request.form["work_accident"] promotion_last_5years = request.form["promotion_last_5years"] salary = request.form["salary"] data = pd.DataFrame(data=[[ 0, satisfaction_level, last_evaluation, number_project, average_montly_hours, time_spend_company, work_accident, promotion_last_5years, salary ]], columns=[ 'empid', 'satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salary' ]) # using dictionary to convert specific columns convert_dict = { 'empid': int, 'satisfaction_level': float, 'last_evaluation': float, 'number_project': int, 'average_montly_hours': int, 'time_spend_company': int, 'Work_accident': int, 'promotion_last_5years': int, 'salary': object } data = data.astype(convert_dict) # object initialization predictModel = PredictModel(run_id, data_path) # prediction the model output = predictModel.single_predict_from_model(data) print('output : ' + str(output)) return Response("Predicted Output is : " + str(output)) except ValueError: return Response("Error Occurred! %s" % ValueError) except KeyError: return Response("Error Occurred! %s" % KeyError) except Exception as e: return Response("Error Occurred! %s" % e)
def batch_prediction_route_client(): try: config = Config() run_id = config.get_run_id() data_path = config.prediction_data_path predictModel = PredictModel(run_id, data_path) predictModel.batch_predict_from_model() return Response("Prediction sucessfull with RunID : " + str(run_id)) except ValueError: return Response("Error Occured! %s" % ValueError) except KeyError: return Reponse("Error Occured! %s" % KeyError) except Exception as e: return Response("Error Occured! %s" % e)
def batch_prediction_route_client(): try: config = Config() #get run id run_id = config.get_run_id() data_path = config.prediction_data_path #prediction object initialization predictModel=PredictModel(run_id, data_path) #prediction the model predictModel.batch_predict_from_model() return Response("Prediction successfull! and its RunID is : "+str(run_id)) except ValueError: return Response("Error Occurred! %s" % ValueError) except KeyError: return Response("Error Occurred! %s" % KeyError) except Exception as e: return Response("Error Occurred! %s" % e)