def demo_branin(steps=20, random_steps=5, cv=5, disable_auto_plot=False): conn = Connection(server_address) optimizers = ["RandomSearch", "BayOpt"] optimizer_arguments= [{}, {"initial_random_runs": random_steps} ] param_defs = { "x": {"type": "MinMaxNumericParamDef", "lower_bound": -5, "upper_bound": 10}, "y": {"type": "MinMaxNumericParamDef", "lower_bound": 0, "upper_bound": 15}, } exp_ids = [] for i, o in enumerate(optimizers): exp_id = conn.init_experiment(o, o, param_defs, minimization=True, optimizer_arguments=optimizer_arguments[i])#{"multiprocessing": "none"}) exp_ids.append(exp_id) print("Initialized all optimizers.") for i in range(steps*cv): if i > 0 and i%10 == 0: print("finished %i" %i) for e_id in exp_ids: single_branin_evaluation_step(conn, e_id)
def demo_branin(steps=20, random_steps=5, cv=5, disable_auto_plot=False): conn = Connection(server_address) optimizers = ["RandomSearch", "BayOpt"] optimizer_arguments = [{}, {"initial_random_runs": random_steps}] param_defs = { "x": { "type": "MinMaxNumericParamDef", "lower_bound": -5, "upper_bound": 10 }, "y": { "type": "MinMaxNumericParamDef", "lower_bound": 0, "upper_bound": 15 }, } exp_ids = [] for i, o in enumerate(optimizers): exp_id = conn.init_experiment( o, o, param_defs, minimization=True, optimizer_arguments=optimizer_arguments[i] ) #{"multiprocessing": "none"}) exp_ids.append(exp_id) print("Initialized all optimizers.") for i in range(steps * cv): if i > 0 and i % 10 == 0: print("finished %i" % i) for e_id in exp_ids: single_branin_evaluation_step(conn, e_id)
if z == "A": result *= 10 if z == "B": result *= 0.8 if result > 10: return math.log(result, 10) * 10 else: return result #app.run() start_time = time.time() server_address = "http://localhost:5000" conn = Connection(server_address=server_address) param_defs = { "x": pd.MinMaxNumericParamDef(-5, 10), "y": pd.MinMaxNumericParamDef(0, 15) #, "z": pd.NominalParamDef(["A", "B", "C"]) } pd_dict = param_defs_to_dict(param_defs) optimizer_arguments = { "initial_random_runs": 5, "acquisition_hyperparams": {}, "num_gp_restarts": 5, #"acquisition": "ExpectedImprovement", #TODO string/gfunction translation? "kernel_params": {}, "kernel": "matern52",
f2 = s*(1-t)*math.cos(x)+s result = f1**2 + f2 if z == "A": result *= 10 if z == "B": result *= 0.8 if result > 10: return math.log(result, 10)*10 else: return result #app.run() start_time = time.time() server_address = "http://localhost:5000" conn = Connection(server_address=server_address) param_defs = { "x": pd.MinMaxNumericParamDef(-5, 10), "y": pd.MinMaxNumericParamDef(0, 15) #, "z": pd.NominalParamDef(["A", "B", "C"]) } pd_dict = param_defs_to_dict(param_defs) optimizer_arguments = { "initial_random_runs": 5, "acquisition_hyperparams": {}, "num_gp_restarts": 5, #"acquisition": "ExpectedImprovement", #TODO string/gfunction translation? "kernel_params": {}, "kernel": "matern52",