def save_pipeline(job_id, role, party_id, model_id, model_version): schedule_logger(job_id).info( 'job {} on {} {} start to save pipeline'.format( job_id, role, party_id)) job_dsl, job_runtime_conf, train_runtime_conf = job_utils.get_job_configuration( job_id=job_id, role=role, party_id=party_id) job_parameters = job_runtime_conf.get('job_parameters', {}) job_type = job_parameters.get('job_type', '') if job_type == 'predict': return dag = job_utils.get_job_dsl_parser( dsl=job_dsl, runtime_conf=job_runtime_conf, train_runtime_conf=train_runtime_conf) predict_dsl = dag.get_predict_dsl(role=role) pipeline = pipeline_pb2.Pipeline() pipeline.inference_dsl = json_dumps(predict_dsl, byte=True) pipeline.train_dsl = json_dumps(job_dsl, byte=True) pipeline.train_runtime_conf = json_dumps(job_runtime_conf, byte=True) pipeline.fate_version = RuntimeConfig.get_env("FATE") pipeline.model_id = model_id pipeline.model_version = model_version job_tracker = Tracking(job_id=job_id, role=role, party_id=party_id, model_id=model_id, model_version=model_version) job_tracker.save_pipeline(pipelined_buffer_object=pipeline) schedule_logger(job_id).info( 'job {} on {} {} save pipeline successfully'.format( job_id, role, party_id))
def save_commit_tmp(commit_id, data_table_namespace, tag, branch): version_tmp_table = get_commit_tmp_table( data_table_namespace=data_table_namespace) version_tmp_table.put(commit_id, json_dumps({ "tag": tag, "branch": branch }), use_serialize=False)
def update_job_progress(job_id, dag, current_task_id): role, party_id = query_job_info(job_id) component_count = len( dag.get_dependency(role=role, party_id=int(party_id))['component_list']) success_count = success_task_count(job_id=job_id) job = Job() job.f_progress = float(success_count) / component_count * 100 job.f_update_time = current_timestamp() job.f_current_tasks = json_dumps([current_task_id]) return job
def save_data_table_meta(kv, data_table_name, data_table_namespace): """ save data table meta information :param kv: v should be serialized by JSON :param data_table_name: table name of this data table :param data_table_namespace: table name of this data table :return: """ from arch.api.utils.core_utils import json_dumps data_meta_table = FateSession.get_instance().table( name="%s.meta" % data_table_name, namespace=data_table_namespace, partition=1, create_if_missing=True, error_if_exist=False, persistent=True, in_place_computing=False) for k, v in kv.items(): data_meta_table.put(k, json_dumps(v), use_serialize=False)
def save_version_info(commit_id, data_table_namespace, version_log, tag, branch): version_table = get_version_table( data_table_namespace=data_table_namespace) parent = get_branch_current_commit(version_table=version_table, branch_name=branch) version_info = dict() version_info["commitId"] = commit_id if parent != commit_id: version_info["parent"] = parent else: version_info.update( get_version_info(version_table=version_table, commit_id=parent)) version_info["repeatCommit"] = True version_info["name"] = commit_id version_info["namespace"] = data_table_namespace version_info["log"] = version_log version_info["tag"] = tag version_table.put(commit_id, json_dumps(version_info), use_serialize=False) # todo: should be use a lock version_table.put(branch, commit_id, use_serialize=False)
def submit_job(job_data, job_id=None): if not job_id: job_id = generate_job_id() schedule_logger(job_id).info('submit job, job_id {}, body {}'.format(job_id, job_data)) job_dsl = job_data.get('job_dsl', {}) job_runtime_conf = job_data.get('job_runtime_conf', {}) job_utils.check_pipeline_job_runtime_conf(job_runtime_conf) job_parameters = job_runtime_conf['job_parameters'] job_initiator = job_runtime_conf['initiator'] job_type = job_parameters.get('job_type', '') if job_type != 'predict': # generate job model info job_parameters['model_id'] = '#'.join([dtable_utils.all_party_key(job_runtime_conf['role']), 'model']) job_parameters['model_version'] = job_id train_runtime_conf = {} else: detect_utils.check_config(job_parameters, ['model_id', 'model_version']) # get inference dsl from pipeline model as job dsl job_tracker = Tracking(job_id=job_id, role=job_initiator['role'], party_id=job_initiator['party_id'], model_id=job_parameters['model_id'], model_version=job_parameters['model_version']) pipeline_model = job_tracker.get_output_model('pipeline') job_dsl = json_loads(pipeline_model['Pipeline'].inference_dsl) train_runtime_conf = json_loads(pipeline_model['Pipeline'].train_runtime_conf) path_dict = save_job_conf(job_id=job_id, job_dsl=job_dsl, job_runtime_conf=job_runtime_conf, train_runtime_conf=train_runtime_conf, pipeline_dsl=None) job = Job() job.f_job_id = job_id job.f_roles = json_dumps(job_runtime_conf['role']) job.f_work_mode = job_parameters['work_mode'] job.f_initiator_party_id = job_initiator['party_id'] job.f_dsl = json_dumps(job_dsl) job.f_runtime_conf = json_dumps(job_runtime_conf) job.f_train_runtime_conf = json_dumps(train_runtime_conf) job.f_run_ip = '' job.f_status = JobStatus.WAITING job.f_progress = 0 job.f_create_time = current_timestamp() initiator_role = job_initiator['role'] initiator_party_id = job_initiator['party_id'] if initiator_party_id not in job_runtime_conf['role'][initiator_role]: schedule_logger(job_id).info("initiator party id error:{}".format(initiator_party_id)) raise Exception("initiator party id error {}".format(initiator_party_id)) get_job_dsl_parser(dsl=job_dsl, runtime_conf=job_runtime_conf, train_runtime_conf=train_runtime_conf) TaskScheduler.distribute_job(job=job, roles=job_runtime_conf['role'], job_initiator=job_initiator) # push into queue job_event = job_utils.job_event(job_id, initiator_role, initiator_party_id) try: RuntimeConfig.JOB_QUEUE.put_event(job_event) except Exception as e: raise Exception('push job into queue failed') schedule_logger(job_id).info( 'submit job successfully, job id is {}, model id is {}'.format(job.f_job_id, job_parameters['model_id'])) board_url = BOARD_DASHBOARD_URL.format(job_id, job_initiator['role'], job_initiator['party_id']) logs_directory = get_job_log_directory(job_id) return job_id, path_dict['job_dsl_path'], path_dict['job_runtime_conf_path'], logs_directory, \ {'model_id': job_parameters['model_id'],'model_version': job_parameters['model_version']}, board_url